

Funding \& Reference

- Tammy \& Brett were funded by Department of Energy (DOE) Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics Program
- Brett was also funded by DOE Computational Science Graduate Fellowship (CSGF), administered by the Krell Institute
- B. W. Larsen, T. G. Kolda. Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition. arXiv:2006.16438,2020.
http://arxiv.org/abs/2006.16438

A Tensor is an Multi-Way Array

Tensors Come From Many Applications

- Chemometrics: Emission x Excitation x Samples (Fluorescence Spectroscopy)
- Neuroscience: Neuron x Time x Trial
- Criminology: Day x Hour x Location x Crime (Chicago Crime Reports)
- Machine Learning: Multivariate Gaussian Mixture Models Higher-Order Moments
- Transportation: Pickup x Dropoff x Time (Taxis)
- Sports: Player \times Statistic \times Season (Basketball)
- Cyber-Traffic: IP x IP x Port x Time
- Social Network: Person x Person x Time x Interaction-Type
- Signal Processing: Sensor x Frequency x Time
- Trending Co-occurrence: Term A x Term B x Time

Chemometrics

Criminology

Neuroscience

Machine Learning

Tensors Come From Many Applications

- Chemometrics: Emission x Excitation x Samples (Fluorescence Spectroscopy)

- Neuroscience:
- Criminology: D (Chicago Crime
- Machine Learr Mixture Mode
- Transportation
- Sports: Player
- Cyber-Traffic:
- Social Network Interaction-Type
- Signal Processing: Sensor x Frequency x Time
- Trending Co-occurrence: Term A x Term B x Time

Tensor Decomposition Finds

 Patterns in Massive Data (Unsupervised Learning)

Tensor Decomposition Identifies Factors

$\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d+1}}$

CP Model Sum of r Outer Product Tensors

Factor Matrices

$\mathbf{A}_{k} \in \mathbb{R}^{n_{k} \times r}$

Model Rank

CP First Invented in 1927

Frank Lauren Hitchcock MIT Professor
(1875-1957)

THE EXPRESSION OF A TENSOR OR A POLYADIC AS A SUM OF PRODUCTS

By Frank L. Hitchcock

1. Addition and Multiplication.

Tensors are added by adding corresponding components. The product of a covariant tensor $\mathrm{A}_{i_{1}} \cdot i_{\mathrm{p}}$ of order p into a covariant tensor $\mathrm{B}_{i_{\mathrm{p}+1} \cdots i_{\mathrm{p}+\mathrm{q}}}$ of order q is defined by writing

$$
\mathrm{A}_{i_{1} \cdot i_{p}} \mathrm{~B}_{i_{\mathrm{p}+1} \cdots i_{\mathrm{p}+\mathrm{q}}}=\mathrm{C}_{i_{1} \cdots i_{\mathrm{p}+\mathrm{q}}}
$$(1)

where the product $\mathrm{C}_{i_{1} \cdots i_{p+q}}$ is a covariant tensor of order $p+q$. When no confusion results indices may be omitted giving

$$
\begin{equation*}
\mathrm{AB}=\mathrm{C} \tag{a}
\end{equation*}
$$

equivalent to the $n^{\mathrm{p}+\mathrm{q}}$ equations (1). Boldface type is convenient for indicating that the letters do not denote merely numbers or scalars. Products of contravariant and of mixed tensors may be similarly defined.
A partial statement of the problem to be considered is as follows: to find under what conditions a given tensor can be expressed as a sum of products of assigned form. A more general statement of the problem will be given below.
2. Polyadic form of a tensor.

Any covariant tensor $\mathrm{A}_{i_{1}} \ldots i_{\mathrm{p}}$ can be expressed as the sum of a finite number of tensors each of which is the product of p covariant vectors,

$$
\begin{equation*}
\mathrm{A}_{i_{1}} \cdots i_{\mathrm{p}}=\sum_{j=1}^{j=\mathrm{h}} \mathrm{a}_{t j, i_{1}} \mathrm{a}_{2 j, i_{2}} \cdots \mathrm{a}_{p j, i_{\mathrm{p}}} \tag{2}
\end{equation*}
$$

where $\mathrm{a}_{s j, i,}$, etc., are a set of $h p$ covariant vectors. When the indices $i_{1} \cdots i_{\text {, }}$, can be omitted this may be written

$$
\begin{equation*}
\mathbf{A}=\sum_{j=1}^{j=h} \mathbf{a}_{1 j} \mathbf{a}_{2 j} \cdots a_{p j} \tag{a}
\end{equation*}
$$

The right member is now identical in appearance with a Gibbs
F. L. Hitchcock, The Expression of a Tensor or a Polyadic as a Sum of Products, Journal of Mathematics and Physics, 1927

2. Polyadic form of a tensor.

Any covariant tensor $A_{i_{1}} \ldots i_{p}$ can be expressed as the sum of a finite number of tensors each of which is the product of p covariant vectors.

$$
\begin{equation*}
A_{i_{1}} \cdots i_{p}=\sum_{j=1}^{j=h} a_{1 j, i_{1}} a_{s j,}, \cdots a_{p j, i_{p}} \tag{2}
\end{equation*}
$$

where $a_{i j}, i_{1}$, etc., are a set of $h p$ covariant vectors. When the indices $i_{1} \cdots i_{1}$, can be omitted this may be written

$$
\begin{equation*}
\mathbf{A}=\sum_{j=1}^{j=h} \mathbf{a}_{1 j} \mathbf{a}_{2 j} \cdots \mathbf{a}_{p j} \tag{a}
\end{equation*}
$$

\qquad

CP Independently Reinvented (twice) in 1970

CANDECOMP: Canonical Decomposition

analysis of individual differences in multidimenSIONAL SCALING VIA AN N-WAY GENERALIZATION OF "ECKART-YOUNG" DECOMPOSITION
J. Dovalas Carroll and Jih-Jie Chana bell trleprione laboratories

There has been an interest for some time in the question of dealing with individual differences amongs subjects in making similarity judgments
on which a multidimensional sealing of stimuli is to be bosed. Kuukg on which a multidimensional sealing of stimuli is to be based. Kruskas [19888
and MeGee [1968] have both incorporated different ways of dealing with and McGiee (1968], have both incorporated different ways of dealing with
individual differenes into their sealing procedures. Tucker and Messick [1963] proposed an approach, which they called "Points of view analysis,"
which is probably the most widely used method for dealing with such individwhich is probably the most widely used method for dealing with such individ-
ual differences. In this method, intercorrelations are first computed between ual differences. In this method, intercorrelations are first computed betweem
subjects (based on their similarity judgments) and the resulting correation matrix is factor analyzed to produce a subject space. One then looks for clusters of subjects in this subject space, and if such clusters are found, proceeds in one way or another to define "ideealized" subjects corresponding
to clusters. (The "idealized subjeet" for a given cluster may be defined, for example, by finding the pattern of similarity judgments corresponding to a hypothetical subject at the eluster centroid, by choosing the aetual subject
closest to that centroid, or, most simply, by averaging the similarity judgments for subjects in the given eluster.) The similarities for these "idealized subjects" are then, individually and independently, subjected to multis dimensional sealing.
This apprach. has been criticized by a number of people, most recently
by Ross $[1966]$ (see Clifi 1968 , by Ross [1966] (see Cliff, 1968, for a reply to Ross's criticism and a further
discussion of the "idealized individuals" interpretation of "Ponts of vier discussion of the "idealized individuals" interpretation of "Points of view

J. Douglas Carroll Jih-Jie Chang Bell Labs (1939-2011)
Bell Labs
(1927-2007)

NOTE: This mamuscript wa originally published in 1970 and is reproduced here to make it miore aceessible to intersested scholars. The original reference is
Harsiman. R. A. (197). Foundations of the PAAAFAC Procedure: Models and conditions for an "explanatory" multimandala factor a ralysis. UCLA Workhing Papers in Phonetics, 16.1 84. (University Mirrofilms, Amn Atbor, Michigan No. 10.085).

FOUNDATIONS OF THE PARAFAC PROCEDURE: MODELS AND CONDITIONS FOR AN "EXPLANATORY" Multimodal factor analysis

Richard A. Harshman Univ. Ontario (1943-2008)

CP: CANDECOMP/PARAFAC

In 2000, Henk Kiers proposed this compromise name

CP: Canonical Polyadic

2010: Pierre Comon, Lieven DeLathauwer, and others reverse-engineered CP, revising some of Hitchcock's terminology

Many thanks to the following persons for helping me learn about Jih-Jie Chang: Fan Chung, Ron Graham, Shen Lin (husband), May Chang (niece), Lili Bruer (daughter).

Example Sparse Multiway Data: Reddit

- Reddit is an American social news aggregator, web content rating, and discussion website - A "subreddit" is a discussion forum on a particular topic
- Tensor obtained from frost.io (http://frostt.io/tensors/reddit-2015/)
- Built from reddit comments posted in the year 2015
- Users and words with less than 5 entries have been removed

For perspective, chance of being struck by lightening in your life ≈ 1 in 10^{6}

User

Reddit Tensor
8 million users
200 thousand subreddits 8 million words

$$
x(i, j, k)=\log (1+\text { the number of times user } i \text { used word } j \text { in subreddit } k)
$$

Used a rank $\boldsymbol{r}=\mathbf{2 5}$ decompsition

Interpreting Reddit Components

Sandia
National
Laboratories

Component 6

Reddit Tensor

Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component \#6: International News

Component \#8: Relationships

Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component \#9: U.S. Politics (2015)

Component \#11: Sports

Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component \#15: Wrestling

Component \#18: Soccer

Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component \#19: Movies \& TV

Component \#18: Computer Card Game

Interpretation as Sum of Outer Products

$\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d+1}}$

CP Model Sum of r Outer Product Tensors

$$
\llbracket \mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{d+1} \rrbracket \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d+1}}
$$

$$
x\left(i_{1}, i_{2}, \ldots, i_{d+1}\right) \approx \sum_{j=1}^{r} \prod_{k=1}^{d+1} a_{k}\left(i_{k}, j\right)
$$

Factor Matrices

$\mathbf{A}_{k} \in \mathbb{R}^{n_{k} \times r}$

Interpretation as Row-wise Products

Data

$\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d+1}}$

Factor Matrices

$\mathbf{A}_{k} \in \mathbb{R}^{n_{k} \times r}$

Number of tensor elements $=\prod_{k=1}^{d+1} n_{k}$

$$
x\left(i_{1}, i_{2}, \ldots, i_{d+1}\right) \approx \sum_{j=1}^{r} \prod_{k=1}^{d+1} a_{k}\left(i_{k}, j\right)
$$

To estimate element $\left(i_{1}, i_{2}, \ldots, i_{d+1}\right)$ of data tensor

- Extract row i_{1} of \mathbf{A}_{1}
- Extract row i_{2} of \mathbf{A}_{2}
-
- Extract row i_{d+1} of \mathbf{A}_{d+1}
- Multiply extracted rows elementwise \qquad
- Sum result -

Doing this for every possible combination of rows yields estimates for every element of the data tensor

Alternating Optimization

Data

$\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d+1}}$

Factor Matrices

$\mathbf{A}_{k} \in \mathbb{R}^{n_{k} \times r}$

$$
\min \sum_{i_{1}=1}^{n_{1}} \ldots \sum_{i_{d+1}=1}^{n_{d+1}}\left(x\left(i_{1}, \ldots, i_{d+1}\right)-\sum_{j=1}^{r} \prod_{k=1}^{d+1} a_{k}\left(i_{k}, j\right)\right)^{2}
$$

- One approach: Alternating Optimization
- Fix all but one factor matrix and solve for the remaining one
- Solve for \mathbf{A}_{1}, fixing \mathbf{A}_{2} through \mathbf{A}_{d+1}
- Solve for \mathbf{A}_{2}, fixing \mathbf{A}_{1} and \mathbf{A}_{3} through \mathbf{A}_{d+1}
-
- Solve for \mathbf{A}_{d+1}, fixing \mathbf{A}_{1} through \mathbf{A}_{d}
- Repeat until convergence

Alternating Optimization Subproblem is Matrix Linear Least Squares Problem

Prototypical CP Least Squares Subproblem is "Tall and Skinny"

$$
\begin{aligned}
& \min _{\mathbf{B}} \sum_{i=1}^{N} \sum_{\ell=1}^{n}\left(x(i, \ell)-\sum_{j=1}^{r} z(i, j) b(\ell, j)\right)^{2} \\
& N \gg r, n \\
& \text { Linking to mode- }(d+1) \\
& \text { least squares subproblem } \\
& \text { on prior slide } \\
& n=n_{d+1} \\
& N=\prod_{k=1}^{d} n_{k}
\end{aligned}
$$

Structure of Khatri-Rao Product (KRP): Hadamard Combinations of Rows of Inputs

Sandia
National
Laboratories

$$
\text { KRP of } d \text { Matrices: } \quad \mathbf{Z}=\mathbf{A}_{d} \odot \cdots \odot \mathbf{A}_{1}
$$

Number of columns is the same in all input matrices, but number of rows varies

Each row of KRP is Hadamard product of specific rows in Factor Matrices:

$$
\mathbf{Z}(i,:)=\mathbf{A}_{1}\left(i_{1},:\right) * \cdots * \mathbf{A}_{d}\left(i_{d},:\right)
$$

where

$$
i \equiv 1+\sum_{k=1}^{d}\left(i_{k}-1\right) \prod_{\ell=1}^{k-1} n_{\ell}
$$

1-1 Correspondence between linear index and multi index:

$$
i \in[N] \Leftrightarrow\left(i_{1}, \ldots, i_{d}\right) \in\left[n_{1}\right] \otimes \cdots \otimes\left[n_{d}\right]
$$

Prototypical CP Least Squares Problem has Khatri-Rao Product (KRP) Structure

- KRP costs $O(N r)$ to form
- System costs $O\left(N n r^{2}\right)$ to solve
- KRP structure
- Cost reduced to O (Nnr)
- KRP structure + data sparse
- Cost reduced to $O(r \operatorname{nnz}(\mathbf{X}))$

Question for today:
Suppose this system is
extremely large? How can we solve efficiently?

Ingredient \#1: Sample Subset of Rows in Overdetermined Least Squares System

$\min _{\mathbf{B}}\left\|\mathbf{Z B}^{\boldsymbol{\top}}-\mathbf{X}^{\boldsymbol{\top}}\right\|^{2}$

$$
N \gg r, n
$$

$$
\min _{\mathbf{B}}\left\|\mathbf{\Omega Z B}^{\boldsymbol{\top}}-\boldsymbol{\Omega} \mathbf{X}^{\boldsymbol{\top}}\right\|^{2}
$$

$\boldsymbol{\Omega} \mathbf{Z} \in \mathbb{R}^{s \times r} \quad \mathbf{B}^{\boldsymbol{\top}} \in \mathbb{R}^{r \times n} \quad \boldsymbol{\Omega} \mathbf{X}^{\boldsymbol{\top}} \in \mathbb{R}^{s \times n}$

Complexity reduced from $O(\mathrm{Nnr})$ to $O\left(s n r^{2}\right)$

Key surveys:

M. W. Mahoney, Randomized Algorithms for Matrices and Data, 2011;
D. P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, 2014

How to sample so that solution of sampled problem yields something close to the optimal residual of the original problem?

Ingredient \#2: Weight Sampled Rows by Probability of Selection to Eliminate Bias

| Probability
 distribution on rows
 of linear system | $\sum_{i=1}^{N} p_{i}=1$ |
| ---: | :---: | | Not specifying yet |
| :---: |
| how these |
| probabilities are |
| selected |

Pick a single random index ξ with probability p_{ξ}
Choose

$$
\boldsymbol{\Omega}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & \frac{1}{\sqrt{p_{\xi}}} & 0 & \cdots & 0
\end{array}\right] \in \mathbb{R}^{1 \times N}
$$

Then (assuming all p_{i} positive) the sampled the sampled residual equals true residual in expectation:

$$
\begin{aligned}
\mathbb{E}\left\|\mathbf{\Omega Z B}^{\boldsymbol{\top}}-\boldsymbol{\Omega} \mathbf{X}^{\boldsymbol{\top}}\right\|^{2} & =\sum_{i=1}^{N} p_{i}\left(\left\|\frac{1}{\sqrt{p_{i}}} \mathbf{Z}(i,:) \mathbf{B}^{\boldsymbol{\top}}-\frac{1}{\sqrt{p_{i}}} \mathbf{X}^{\boldsymbol{\top}}(i,:)\right\|^{2}\right) \\
& =\left\|\mathbf{Z B}^{\boldsymbol{\top}}-\mathbf{X}^{\boldsymbol{\top}}\right\|^{2}
\end{aligned}
$$

Pick a s random indices ξ_{j} (with replacement) such that $P\left(\xi_{j}=i\right)=p_{i}$.

$$
\text { Choose } \boldsymbol{\Omega} \in \mathbb{R}^{s \times N} \text { such that } \quad \text { Not specifyying }
$$

$$
\omega(j, i)= \begin{cases}\frac{1}{\sqrt{s p_{i}}} & \text { if } \xi_{j}=i \\ 0 & \text { otherwise }\end{cases}
$$

Each row has a single nonzero!

Then, as before, we have:

$$
\mathbb{E}\left\|\boldsymbol{\Omega} \mathbf{Z B}^{\top}-\mathbf{\Omega X}^{\top}\right\|^{2}=\left\|\mathbf{Z B}^{\top}-\mathbf{X}^{\top}\right\|^{2}
$$

Optimal Choice for Sampling Probability is Based on Leverage Scores

$$
\mathbf{Z} \in \mathbb{R}^{N \times r}
$$

Leverage score:

Let \mathbf{Q} be any orthonormal basis of the column space of \mathbf{Z}.

Leverage score of row i :

$$
\ell_{i}(\mathbf{Z})=\|\mathbf{Q}(i,:)\|_{2}^{2} \in[0,1]
$$

Coherence:

$$
\begin{gathered}
\mu(\mathbf{Z})=\max _{i \in[N]} \ell_{i}(\mathbf{Z}) \\
r / N \leq \mu(\mathbf{Z}) \leq 1
\end{gathered}
$$

Rough Intuition:

Key rows have high leverage score

$$
\begin{aligned}
& s=O\left(\epsilon^{-2} \ln (r) r \beta^{-1}\right) \\
& \text { where } \beta=\min _{i \in[N]} \frac{r p_{i}}{\ell_{i}(\mathbf{Z})}
\end{aligned}
$$

What if we do uniform sampling?

$$
p_{i}=\frac{1}{N} \text { for all } i \in[N]
$$

Case 1: $\mu(\mathbf{Z})=r / N$ (incoherent)

$$
\Rightarrow \beta=1 \Rightarrow s=O\left(\epsilon^{-2} \ln (r) r\right)
$$

$$
\text { Case } 2: \mu(\mathbf{Z})=1 \text { (coherent) }
$$

$$
\Rightarrow \beta=r / N \Rightarrow s=O\left(\epsilon^{-2} \ln (r) N\right)
$$

In Case 2, prefer $p_{i}=\ell_{i}(\mathbf{Z}) / r$, but costs $O\left(N r^{2}\right)$ to compute leverage scores!

Aside: Uniform Sampling Okay for "Mixed" Dense Tensors (Inapplicable to Sparse)

Transform System: $\min _{\mathbf{B} \in \mathbb{R}^{r \times n}}\left\|\Phi \mathbf{Z B}^{\boldsymbol{\top}}-\Phi \mathbf{X}\right\|_{F}^{2}$
$\mathbf{\Phi} \mathbf{Z} \in \mathbb{R}^{N \times r} \quad \mathbf{B}^{\top} \in \mathbb{R}^{r \times n}$

- Choose $\boldsymbol{\Phi}$ so that all leverage scores of $\boldsymbol{\Phi} \mathbf{Z}$ approximately equal, then uniform sampling yields $\beta \approx 1$
- "Uniformize" the leverage scores per Mahoney
- Fast Johnson-Lindenstrauss Transform (FJLT) uses random rows of matrix transformed by FFT and Rademacher diagonal
- FJLT cost per iteration: $O(r N \log N)$
- Gaining Efficiency for KRP matrices
- Transform individual factor matrices before forming Z
- Sample rows of \mathbf{Z} implicitly
- Kronecker Fast Johnson-Lindenstrauss Transform (KFJLT)
- Special handling of right-hand side with preprocessing costs
- KFJLT cost per iteration: $O\left(r \sum_{k} n_{k} \log n_{k}+s r^{2}\right)$
- References
- C. Battaglino, G. Ballard, T. G. Kolda. A Practical Randomized CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, Vol. 39, No. 2, pp. 876-901, 26 pages, 2018. https://doi.org/10.1137/17M1112303
- R. Jin, T. G. Kolda, R. Ward. Faster Johnson-Lindenstrauss Transforms via Kronecker Products, 2019. http://arxiv.org/abs/1909.04801
$N \gg r, n$

Ingredient \#3: Bound Leverage Scores

KRP: $\mathbf{Z}=\mathbf{A}_{d} \odot \cdots \odot \mathbf{A}_{1}$
$\mathbf{A}_{1} \in \mathbb{R}^{n_{1} \times r} \quad \mathbf{Z} \in \mathbb{R}^{N \times r}$

Upper Bound on Leverage Score
Lemma (Cheng et al., NIPS 2016;
Battaglino et al., SIMAX 2018):

1-1 Correspondence between linear index and multi index:

$$
i \in[N] \Leftrightarrow\left(i_{1}, \ldots, i_{d}\right) \in\left[n_{1}\right] \otimes \cdots \otimes\left[n_{d}\right]
$$

Ingredient \#4: Use Factor Matrix Leverage Scores for Sampling Probabilities (Main Thm)

Given linear system: $\quad\left\|\mathbf{Z B}^{\boldsymbol{\top}}-\mathbf{X}^{\boldsymbol{\top}}\right\|^{2}$ with $\mathbf{Z}=\mathbf{A}_{d} \odot \cdots \odot \mathbf{A}_{1} \in \mathbb{R}^{N \times r}, \mathbf{X}^{\boldsymbol{\top}} \in \mathbb{R}^{n \times N}$

Define sampling probabilities:

And random sampling matrix:

Solve sampled problem:

Get probabilistic error bound:
when number of samples satisfies:
$p_{i}=\frac{1}{r^{d}} \prod_{k=1}^{d} \ell_{i_{k}}\left(\mathbf{A}_{k}\right)$ for all $i \in[N]$
Leverage Scores
$\ell_{i_{k}}\left(\mathbf{A}_{k}\right)=\left\|\mathbf{Q}_{k}\left(i_{k},:\right)\right\|_{2}$ basis for column space of \mathbf{A}_{k}

Pick a s random indices ξ_{j} such that $P\left(\xi_{j}=i\right)=p_{i}$ and define

$$
\boldsymbol{\Omega} \in \mathbb{R}^{s \times N} \text { with } \omega(j, i)= \begin{cases}\frac{1}{\sqrt{s p_{i}}} & \text { if } \xi_{j}=i \\ 0 & \text { otherwise }\end{cases}
$$

$$
\tilde{\mathbf{B}}_{*} \equiv \arg \min _{\mathbf{B} \in \mathbb{R}^{r \times n}}\left\|\boldsymbol{\Omega} \mathbf{Z} \mathbf{B}^{\boldsymbol{\top}}-\boldsymbol{\Omega} \mathbf{X}\right\|_{F}^{2}
$$

With probability $1-\delta$ for $\delta \in(0,1)$, we have

$$
\left\|\mathbf{Z} \tilde{\mathbf{B}}_{*}^{\top}-\mathbf{X}^{\boldsymbol{\top}}\right\|_{F}^{2} \leq(1+O(\epsilon))\left\|\mathbf{Z} \mathbf{B}_{*}^{\top}-\mathbf{X}^{\boldsymbol{\top}}\right\|_{F}^{2}
$$

$$
i \in[N] \Leftrightarrow\left(i_{1}, \ldots, i_{d}\right) \in\left[n_{1}\right] \otimes \cdots \otimes\left[n_{d}\right]
$$

Ingredient \#5: Efficient Sampling without Forming KRP

KRP: $\mathbf{Z}=\mathbf{A}_{d} \odot \cdots \odot \mathbf{A}_{1}$

Upper Bound on Leverage Score
Lemma (Cheng et al., NIPS 2016;
Battaglino et al., SIMAX 2018):
$\ell_{i}(\mathbf{Z}) \leq \prod_{k=1}^{d} \ell_{i_{k}}\left(\mathbf{A}_{k}\right)$

$$
\begin{aligned}
& \text { 1-1 Correspondence between linear index and multi index: } \\
& \qquad i \in[N] \Leftrightarrow\left(i_{1}, \ldots, i_{d}\right) \in\left[n_{1}\right] \otimes \cdots \otimes\left[n_{d}\right]
\end{aligned}
$$

See Reference for Details of Other Specializations

$\min _{\mathbf{B}}\left\|\mathbf{Z B}^{\boldsymbol{\top}}-\mathbf{X}^{\boldsymbol{\top}}\right\|^{2}$
$\mathbf{Z} \in \mathbb{R}^{N \times r}$

$\min _{\mathbf{B}}\left\|\boldsymbol{\Omega}_{\mathbf{Z B}}{ }^{\boldsymbol{\top}}-\boldsymbol{\Omega}^{\boldsymbol{\top}}\right\|^{2}$
B
$\boldsymbol{\Omega} \mathbf{Z} \in \mathbb{R}^{s \times r} \mathbf{B}^{\boldsymbol{\top}} \in \mathbb{R}^{r \times n} \quad \boldsymbol{\Omega} \mathbf{X}^{\boldsymbol{\top}} \in \mathbb{R}^{s \times n}$

- Combined repeated samples
- Deterministically include rows with high leverage scores, including specialized methods for finding such rows
- Never form \mathbf{X}^{T} explicitly, precompute linear indices for every nonzero and every mode
- Using epochs and estimating error using sampling

Numerical Resulff

CP-ARLS-Lev Comparable to CP-ALS on Small Uber Problem

Uber Tensor: $183 \times 24 \times 1140 \times 1717$ Uber Tensor with 3 M nonzeros (0.038% dense). Rank $r=25$ CP decomposition

Over 9X Speed-up for Amazon Tensor with 1.7 Billion Nonzeros

Amazon Tensor: 4.8M x 1.8M x 1.8M Amazon Tensor with 1.7B nonzeros. Rank $r=25$ CP decomposition

Over 12X Speed-up for Reddit Tensor with 4.7 Billion Nonzeros (106 GB)

Amazon Tensor: $8.2 \mathrm{M} \times 0.2 \mathrm{M} \times 8.1 \mathrm{M}$ Reddit Tensor with 4.7B nonzeros. Rank $r=25$ CP decomposition

Conclusions \& Future Work

- Tensor decomposition: unsupervised machine learning
- Many applications, including social discussion analysis
- Model fit via alternating optimization, resulting in series of least squares subproblems
- Subproblems are "tall and skinny", amenable to sketching
- Leverage-score sampling ideal for sparse data tensors
- Can estimate leverage scores cheaply using leverage scores of factor matrices
- Results in huge speedups f

[^0]
[^0]: Contact Info: Brett bwlarsen@stanford.edu, Tammy tgkolda@sandia.gov

