

Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition

Tamara G. Kolda Sandia National Labs, Livermore, CA www.kolda.net

Joint work with Brett Larsen Stanford University

Supported by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

7/23/2020

Ilustration by Chris Brigmar

Funding

- Tammy & Brett were funded by Department of Energy (DOE) Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics Program
- Brett was also funded by DOE Computational Science Graduate Fellowship (CSGF), administered by the Krell Institute

Tensors Come From Many Applications

- Chemometrics: Emission x Excitation x Samples (Fluorescence Spectroscopy)
- Neuroscience: Neuron x Time x Trial
- Criminology: Day x Hour x Location x Crime (Chicago Crime Reports)
- Machine Learning: Multivariate Gaussian Mixture Models Higher-Order Moments
- Transportation: Pickup x Dropoff x Time (Taxis)
- **Sports:** Player x Statistic x Season (Basketball)
- Cyber-Traffic: IP x IP x Port x Time
- Social Network: Person x Person x Time x Interaction-Type
- Signal Processing: Sensor x Frequency x Time
- **Trending Co-occurrence:** Term A x Term B x Time

Tensors Come From Many Applications

- Chemometrics: Emission x Excitation x Samples (Fluorescence Spectroscopy)
- Neuroscience:
- Criminology: D (Chicago Crime
- Machine Learr Mixture Model
- Transportation
- **Sports:** Player
- Cyber-Traffic:
- Social Network Interaction-Type
- Signal Processing: Sensor x Frequency x Time
- Trending Co-occurrence: Term A x Term B x Time

Tensor Decomposition Finds Patterns in Massive Data (Unsupervised Learning)

Kolda - 1W-MINDS Seminar

Neuroscience

Chemometrics

Tensor Decomposition Identifies Factors

Example Sparse Multiway Data: Reddit

- Reddit is an American social news aggregator, web content rating, and discussion website
 - A "subreddit" is a discussion forum on a particular topic
- Tensor obtained from frost.io (<u>http://frostt.io/tensors/reddit-2015/</u>)
 - Built from reddit comments posted in the year 2015
 - Users and words with less than 5 entries have been removed

Reddit Tensor

8 million users200 thousand subreddits8 million words

4.7 billion non-zeros $(10^{-8}\%)$ 106 gigabytes

 $x(i, j, k) = \log (1 + \text{the number of times user } i \text{ used word } j \text{ in subreddit } k)$

Used a rank r = 25 decompsition

Smith et al (2017). "FROSTT: The Formidable Open Repository of Sparse Tensors and Tools"

Interpreting Reddit Components

Component #6: International News

Component #8: Relationships

Sandia National Laboratories

7/23/2020

Kolda - 1W-MINDS Seminar

Component #18: Soccer

Component #15: Wrestling

7/23/2020

Kolda - 1W-MINDS Seminar

Component #19: Movies & TV

7/23/2020

Kolda - 1W-MINDS Seminar

Tensor Decomposition Identifies Factors

Key Idea: Alternate among the d factor matrices, fixing all but that one and solving. Each subproblem is linear least squares.

Prototypical CP Least Squares Problem has Khatri-Rao Product (KRP) Structure

- KRP costs O(Nr) to form
- System costs $O(Nnr^2)$ to solve

Sandia National Laboratories

- KRP structure
 - Cost reduced to O(Nnr)
- KRP structure + data sparse
 - Cost reduced to $O(r \operatorname{nnz}(\mathbf{X}))$

Structure of Khatri-Rao Product (KRP): Hadamard Combinations of Rows of Inputs

KRP of d Matrices: $\mathbf{Z} = \mathbf{A}_d \odot \cdots \odot \mathbf{A}_1$

Each row of KRP is Hadamard product of specific rows in Factor Matrices:

Sandia National Laboratories

$$\mathbf{Z}(i,:) = \mathbf{A}_1(i_1,:) * \cdots * \mathbf{A}_d(i_d,:)$$

where

$$i = (n_{d-1} \cdots n_1)(i_d - 1) + (n_{d-2} \cdots n_1)(i_{d-1} - 1) + \cdots + n_1(i_2 - 1) + i_1 \in [N]$$

1-1 Correspondence between *linear index and multi index:* $i \in [N] \Leftrightarrow (i_1, \dots, i_d) \in [n_1] \otimes \dots \otimes [n_d]$

Ingredient #1: Sample Subset of Rows in Overdetermined Least Squares System

Complexity reduced from O(Nnr) to $O(snr^2)$

Key surveys:

M. W. Mahoney, *Randomized Algorithms for Matrices and Data*, 2011; D. P. Woodruff, *Sketching as a Tool for Numerical Linear Algebra*, 2014

How sample so that solution of sampled problem yields something close to the optimal residual of the original problem?

Ingredient #2: Weight Sampled Rows by Probability of Selection to Eliminate Bias

how these

probabilities are

selected

Probability distribution on rows of linear system

Pick a single random index ξ with probability p_{ξ}

Choose

$$\mathbf{\Omega} = \begin{bmatrix} 0 & \cdots & 0 & \frac{1}{\sqrt{p_{\xi}}} & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{1 \times N}$$

 ξ th entry

Then (assuming all p_i positive) the sampled the sampled residual equals true residual in expectation:

$$\begin{split} \mathbb{E} \| \mathbf{\Omega} \mathbf{Z} \boldsymbol{\alpha} - \mathbf{\Omega} \boldsymbol{\nu} \|^2 &= \sum_{i=1}^{N} p_i \left(\left\| \frac{1}{\sqrt{p_i}} \mathbf{Z}(i,:) \boldsymbol{\alpha} - \frac{1}{\sqrt{p_i}} \nu_i \right\|^2 \right) \\ &= \| \mathbf{Z} \boldsymbol{\alpha} - \boldsymbol{\nu} \|^2 \end{split}$$

Pick a *s* random indices ξ_i (with replacement) such that $P(\xi_i = i) = p_i$.

Choose $\mathbf{\Omega} \in \mathbb{R}^{s imes N}$ such that

Not specifying vet how s is determined

Sandia National

aboratories

$$\omega(j,i) = \begin{cases} \frac{1}{\sqrt{sp_i}} & \text{if } \xi_j = i\\ 0 & \text{otherwise} \end{cases}$$

Each row has a single nonzero!

Then, as before, we have:

$$\mathbb{E}\|\mathbf{\Omega}\mathbf{Z}\boldsymbol{\alpha}-\mathbf{\Omega}\boldsymbol{\nu}\|^2=\|\mathbf{Z}\boldsymbol{\alpha}-\boldsymbol{\nu}\|^2$$

Survey: D. P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, 2014

Optimal Choice for Sampling Probability is Based on Leverage Scores

 $\mathbf{Z} \in \mathbb{R}^{N \times r}$ Leverage score:

Let **Q** be any orthonormal basis of the column space of **Z**.

Leverage score of row *i*:

 $\ell_i(\mathbf{Z}) = \|\mathbf{Q}(i,:)\|_2^2 \in [0,1]$

Coherence:

 $\mu(\mathbf{Z}) = \max_{i \in [N]} \ell_i(\mathbf{Z})$ $r/N \le \mu(\mathbf{Z}) \le 1$

Rough Intuition: Key rows have high leverage score $s = O(\epsilon^{-2} \ln(r) r \beta^{-1})$ where $\beta = \min_{i \in [N]} \frac{r p_i}{\ell_i(\mathbf{Z})}$

What if we do uniform sampling? $p_i = \frac{1}{N}$ for all $i \in [N]$,

Case 1: $\mu(\mathbf{Z}) = r/N$ (incoherent)

$$\Rightarrow \beta = 1 \Rightarrow s = O(\epsilon^{-2} \ln(r) r)$$

Case 2: $\mu(\mathbf{Z}) = 1$ (coherent)

 $\Rightarrow \beta = r/N \Rightarrow s = O(\epsilon^{-2} \ln(r) N)$

In Case 2, prefer $p_i = \ell_i(\mathbf{Z})/r$, but costs $O(Nr^2)$ to compute leverage scores!

Survey: D. P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, 2014

Aside: Uniform Sampling Okay for "Mixed" **Dense Tensors (Inapplicable to Sparse)**

- Choose Φ so that all leverage scores of ΦZ approximately equal, then uniform sampling yields $\beta \approx 1$
 - "Uniformize" the leverage scores per Mahoney
 - Fast Johnson-Lindenstrauss Transform (FJLT) uses random rows of matrix transformed by FFT and Rademacher diagonal
 - FJLT cost per iteration: $O(rN \log N)$
 - Gaining Efficiency for KRP matrices
 - Transform individual factor matrices before forming Z
 - Sample rows of **Z** implicitly
 - Kronecker Fast Johnson-Lindenstrauss Transform (KFJLT)
 - Special handling of right-hand side with preprocessing costs
 - KFJLT cost per iteration: $O(r \sum_k n_k \log n_k + sr^2)$
 - References
 - C. Battaglino, G. Ballard, T. G. Kolda. A Practical Randomized CP Tensor Decomposition. SIAM Journal on Matrix Analysis and Applications, Vol. 39, No. 2, pp. 876-901, 26 pages, 2018. https://doi.org/10.1137/17M1112303
 - R. Jin, T. G. Kolda, R. Ward. Faster Johnson-Lindenstrauss Transforms via Kronecker Products, 2019. http://arxiv.org/abs/1909.04801

7/23/2020

Ingredient #3: Bound Leverage Scores

Ingredient #4: Use Factor Matrix Leverage Scores for Sampling Probabilities (Main Thm)

Given linear system: $\|\mathbf{Z}\mathbf{B}^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}}\|^2$ with $\mathbf{Z} = \mathbf{A}_d \odot \cdots \odot \mathbf{A}_1 \in \mathbb{R}^{N \times r}, \mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{n \times N}$

Define sampling probabilities:

Leverage Scores where \mathbf{Q}_k is orthonormal $\ell_{i_k}(\mathbf{A}_k) = \|\mathbf{Q}_k(i_k,:)\|_2$ basis for column space of \mathbf{A}_k

And random Pick a *s* random indices ξ_j such that sampling matrix: $P(\xi_j = i) = p_i$ and define $\Omega \in \mathbb{R}^{s \times N}$ with $\omega(j, i) = \begin{cases} \frac{1}{\sqrt{sp_i}} & \text{if } \xi_j = i \\ 0 & \text{otherwise} \end{cases}$

Solve sampled problem:

$$\tilde{\mathbf{B}}_* \equiv \arg\min_{\mathbf{B} \in \mathbb{R}^{r \times n}} \|\mathbf{\Omega} \mathbf{Z} \mathbf{B}^{\intercal} - \mathbf{\Omega} \mathbf{X}\|_F^2$$

Get probabilistic error bound:

With probability $1 - \delta$ for $\delta \in (0,1)$, we have $\|\mathbf{Z}\tilde{\mathbf{B}}_*^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}}\|_F^2 \le (1 + \delta)^2$

$$\mathbf{Z}\tilde{\mathbf{B}}_*^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}} \|_F^2 \le (1 + O(\epsilon)) \|\mathbf{Z}\mathbf{B}_*^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}}\|_F^2$$

when number of samples satisfies:

$$s = O(r^d \log(n/\delta)/\epsilon^2)$$

1-1 Correspondence between linear index and multi index: $i \in [N] \Leftrightarrow (i_1, \dots, i_d) \in [n_1] \otimes \dots \otimes [n_d]$

Ingredient #5: Efficient Sampling without Forming KRP

Ingredient #6: Combine Repeated Rows

Problem: Concentrated sampling probabilities identify a few key rows but can lead to many repeats!

Ingredient #7: Hybrid Deterministic and Randomly-Sampled Rows

1-1 Correspondence between *linear index and multi index:*

 $i \in [N] \Leftrightarrow (i_1, \dots, i_d) \in [n_1] \otimes \dots \otimes [n_d]$

Ingredient #9: Find All High-Probability Rows without Computing All Probabilities

Recall

$$p_i \equiv \frac{1}{r^d} \prod_{k=1}^d \ell_{i_k}(\mathbf{A}_k)$$

• For given tolerance $\tau > 1/N$, define the set of deterministic rows to include

$$\mathcal{D}_{\tau} = \{ i \in [N] \mid p_i \ge \tau \}$$

- Compute without computing all p_i values
- A few high leverage scores means all the others are necessarily low!
- Use bounding procedure to eliminate most options
- Compute products of at most a top few leverage scores in each mode

Sorted Leverages Scores (Descending)

1-1 Correspondence between linear index and multi index: $i \in [N] \Leftrightarrow (i_1, \dots, i_d) \in [n_1] \otimes \dots \otimes [n_d]$

Ingredient #9: Efficiently Extract RHS from (Sparse) Unfolded Data Tensor

Similar in spirit to ideas for dense tensors in Battaglino et al., SIMAX 2018

Sandia National Laboratories

Numerical Results

7/23/2020

Solution Quality as Number of Samples Increase and Hybrid Improvements

Single Least Squares Problem with N = 46M rows, r = 10 columns, n = 183 right-hand sides

Deterministic Can Account for Substantial Portion of Probability

Sandia National Laboratories

Single Least Squares Problem with N = 46M rows, r = 10 columns, n = 183 right-hand sides

Some Trade-off Between Accuracy and Expense for Deterministic

Over 9X Speed-up for Amazon Tensor with 1.7 Billion Nonzeros

Amazon Tensor: 4.8M x 1.8M x 1.8M Amazon Tensor with 1.7B nonzeros. Rank r = 25 CP decomposition Sandia National Laboratories

Over 12X Speed-up for Reddit Tensor with 4.7 Billion Nonzeros (106 GB)

Amazon Tensor: 8.2M x 0.2M x 8.1M Reddit Tensor with 4.7B nonzeros. Rank r = 25 CP decomposition Sandia National

laboratories

Conclusions & Future Work

- How to make CP tensor decomposition faster for largescale sparse tensors? Matrix sketching
- How to avoid repeated samples? Combine repeat rows or deterministically include high-probability rows
- How to efficiently sample? Sample independently from each factor matrix to build KRP
- How to extract data for RHS from data tensor? Precompute linear indices for tensor fibers
- Overall result: Order-of-magnitude speed-ups
- Many open problems: How to pick # samples (per mode even), deterministic threshold, robust stopping conditions, sampling based on data as well as KRP, parallelization of method, etc.

Contact Info: Brett <u>bwlarsen@stanford.edu</u>, Tammy <u>tgkolda@sandia.gov</u>

Larsen and Kolda,

Practical Leverage-Based

Sampling for Tensor

Decomposition,

arXiv:2006.16438, 2020

Difference to True Residual

samples

 $\cdot 10^{5}$

→ random → hybrid

 10^{0}

 10^{-6}