Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition

Tamara G. Kolda
Sandia National Labs, Livermore, CA
www.kolda.net

Joint work with
Brett Larsen
Stanford University

Funding

- Tammy & Brett were funded by Department of Energy (DOE) Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics Program

- Brett was also funded by DOE Computational Science Graduate Fellowship (CSGF), administered by the Krell Institute
A moment for acknowledgment of greater issues
Tensors Come From Many Applications

- **Chemometrics**: Emission x Excitation x Samples (Fluorescence Spectroscopy)
- **Neuroscience**: Neuron x Time x Trial
- **Criminology**: Day x Hour x Location x Crime (Chicago Crime Reports)
- **Machine Learning**: Multivariate Gaussian Mixture Models Higher-Order Moments
- **Transportation**: Pickup x Dropoff x Time (Taxis)
- **Sports**: Player x Statistic x Season (Basketball)
- **Cyber-Traffic**: IP x IP x Port x Time
- **Social Network**: Person x Person x Time x Interaction-Type
- **Signal Processing**: Sensor x Frequency x Time
- **Trending Co-occurrence**: Term A x Term B x Time
Tensors Come From Many Applications

- **Chemometrics**: Emission x Excitation x Samples (Fluorescence Spectroscopy)
- **Neuroscience**: Neuron x Time x Trial
- **Criminology**: Day x Hour x Location x Crime (Chicago Crime Reports)
- **Machine Learning**: Multivariate Gaussian Mixture Models
- **Transportation**: Pickup x Dropoff x Time (Taxis)
- **Sports**: Player x Statistic x Season (Basketball)
- **Cyber-Traffic**: IP x IP x Port x Time
- **Social Network**: Person x Person x Time x Interaction-Type
- **Signal Processing**: Sensor x Frequency x Time
- **Trending Co-occurrence**: Term A x Term B x Time

Tensor Decomposition Finds Patterns in Massive Data (Unsupervised Learning)
Tensor Decomposition Identifies Factors

\[\mathbf{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_{d+1}} \]

Data

\[\mathbf{X} \approx \sum_{r=1}^{d+1} \mathbf{A}_r \]

CP Model

\[\mathbf{M} = [\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_{d+1}] \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_{d+1}} \]

Sum of \(r \) Outer Product Tensors

Factor Matrices

\[\mathbf{A}_k \in \mathbb{R}^{n_k \times r} \]

Model Rank

\[\mathbf{x}_i = x(i_1, i_2, \ldots, i_{d+1}) \]

\[m_i = m(i_1, i_2, \ldots, i_{d+1}) = \sum_{j=1}^{r} \prod_{k=1}^{d+1} a_{k}(i_k, j) \]
Example Sparse Multiway Data: Reddit

- Reddit is an American social news aggregator, web content rating, and discussion website
 - A “subreddit” is a discussion forum on a particular topic
- Tensor obtained from frost.io (http://frostt.io/tensors/reddit-2015/)
 - Built from reddit comments posted in the year 2015
 - Users and words with less than 5 entries have been removed

Reddit Tensor
8 million users
200 thousand subreddits
8 million words

4.7 billion non-zeros ($10^{-8}\%$)
106 gigabytes

$x(i, j, k) = \log (1 + \text{the number of times user } i \text{ used word } j \text{ in subreddit } k)$

Used a rank $r = 25$ decomposition

Interpreting Reddit Components

Reddit Tensor

Component 6

Largest entries, in absolute value

Compute rank $r=25$
Model

variance explained $\approx 6\%$

Relative Weights of 25 Components

Largest of 200K entries, in absolute value

Largest of 8M entries, in absolute value

Color-coded by overall frequency

Top Subreddits

Top Words

Top 1000 Users

Interpreting Reddit Components

7/23/2020

Kolda - 1W-MINDS Seminar
Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component #6: International News

Component #8: Relationships
Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component #11: Sports

7/23/2020

Kolda - 1W-MINDS Seminar
Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component #15: Wrestling

Component #18: Soccer
Example Reddit Components Include Rare Words Apropos to High-Scoring Reddits

Component #19: Movies & TV

Component #18: Computer Card Game
Tensor Decomposition Identifies Factors

\[\mathbf{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_{d+1}} \]

\[\mathbf{M} = [\mathbf{A}_1, \mathbf{A}_2, \ldots, \mathbf{A}_{d+1}] \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_{d+1}} \]

\[m_i = m(i_1, i_2, \ldots, i_{d+1}) = \sum_{j=1}^{r} \prod_{k=1}^{d+1} a_k(i_k, j) \]

Key Idea: Alternate among the \(d \) factor matrices, fixing all but that one and solving. Each subproblem is linear least squares.
Prototypical CP Least Squares Problem has Khatri-Rao Product (KRP) Structure

\[\min_B \| Z B^T - X^T \|^2 \]

\[Z \in \mathbb{R}^{N \times r} \]
\[B^T \in \mathbb{R}^{r \times n} \]
\[X^T \in \mathbb{R}^{N \times n} \]

\[Z = A_d \odot \cdots \odot A_1 \]
\[B = A_{d+1} \]

KRP costs \(O(Nr) \) to form

System costs \(O(Nnr^2) \) to solve

KRP structure
- Cost reduced to \(O(Nnr) \)

KRP structure + data sparse
- Cost reduced to \(O(r \ \text{nnz}(X)) \)

\(N \gg r, n \)

Linking back to mode-(\(d+1 \)) least squares subproblem

\[N = \prod_{k=1}^{d} n_k \]

\[n = n_{d+1} \]
Structure of Khatri-Rao Product (KRP): Hadamard Combinations of Rows of Inputs

KRP of d Matrices: $Z = A_d \odot \cdots \odot A_1$

Each row of KRP is Hadamard product of specific rows in Factor Matrices:

$$Z(i,:) = A_1(i_1,:) * \cdots * A_d(i_d,:).$$

where

$$i = (n_{d-1} \cdots n_1)(i_d - 1) + (n_{d-2} \cdots n_1)(i_{d-1} - 1) + \cdots + n_1(i_2 - 1) + i_1 \in [N]$$

1-1 Correspondence between linear index and multi index:

$$i \in [N] \Leftrightarrow (i_1, \ldots, i_d) \in [n_1] \otimes \cdots \otimes [n_d]$$

Number of columns is the same in all input matrices, but number of rows varies.
Ingredient #1: Sample Subset of Rows in Overdetermined Least Squares System

\[\text{min}_B \|ZB^T - X^T\|^2 \]

\[Z \in \mathbb{R}^{N \times r} \quad B^T \in \mathbb{R}^{r \times n} \quad X^T \in \mathbb{R}^{N \times n} \]

Khatr-Rao Product (KRP) Structure

\[\text{Unknown} \quad \text{Unknown} \quad \text{May Be Very Sparse} \]

\[N \gg r, n \]

\[\text{min}_B \|\Omega ZB^T - \Omega X^T\|^2 \]

\[\Omega Z \in \mathbb{R}^{s \times r} \quad B^T \in \mathbb{R}^{r \times n} \quad \Omega X^T \in \mathbb{R}^{s \times n} \]

Sampled KRP

Sampled Data

Complexity reduced from \(O(Nnr) \) to \(O(snr^2) \)

Key surveys:
M. W. Mahoney, *Randomized Algorithms for Matrices and Data*, 2011;

How sample so that solution of sampled problem yields something close to the optimal residual of the original problem?
Ingredient #2: Weight Sampled Rows by Probability of Selection to Eliminate Bias

Pick a single random index ξ with probability p_ξ

Choose

$$\Omega = \begin{bmatrix} 0 & \cdots & 0 & \frac{1}{\sqrt{p_\xi}} & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{1 \times N}$$

Then (assuming all p_i positive) the sampled residual equals true residual in expectation:

$$\mathbb{E} \| \Omega Z \alpha - \Omega \nu \|^2 = \sum_{i=1}^{N} p_i \left(\frac{1}{\sqrt{p_i}} Z(i,:) \alpha - \frac{1}{\sqrt{p_i}} \nu_i \right)^2$$

$$= \| Z \alpha - \nu \|^2$$

Optimal Choice for Sampling Probability is Based on Leverage Scores

Leverage score:
Let Q be any orthonormal basis of the column space of Z.

Leverage score of row i:
$$\ell_i(Z) = \| Q(i, :) \|_2^2 \in [0, 1]$$

Coherence:
$$\mu(Z) = \max_{i \in [N]} \ell_i(Z)$$
$$r/N \leq \mu(Z) \leq 1$$

Rough Intuition:
Key rows have high leverage score

What if we do uniform sampling?
$$p_i = \frac{1}{N} \text{ for all } i \in [N],$$

Case 1: $\mu(Z) = r/N$ (incoherent)
$$\Rightarrow \beta = 1 \Rightarrow s = O(\epsilon^{-2} \ln(r) r \beta^{-1})$$

Case 2: $\mu(Z) = 1$ (coherent)
$$\Rightarrow \beta = r/N \Rightarrow s = O(\epsilon^{-2} \ln(r) N)$$

In Case 2, prefer
$$p_i = \ell_i(Z)/r,$$ but costs $O(Nr^2)$ to compute leverage scores!

Aside: Uniform Sampling Okay for “Mixed” Dense Tensors (Inapplicable to Sparse)

Choose Φ so that all leverage scores of ΦZ approximately equal, then uniform sampling yields $\beta \approx 1$

- “Uniformize” the leverage scores per Mahoney
- Fast Johnson-Lindenstrauss Transform (FJLT) uses random rows of matrix transformed by FFT and Rademacher diagonal
- FJLT cost per iteration: $O(rN \log N)$

Gaining Efficiency for KRP matrices

- Transform individual factor matrices before forming Z
- Sample rows of Z implicitly
- Kronecker Fast Johnson-Lindenstrauss Transform (KFJLT)
- Special handling of right-hand side with preprocessing costs
- KFJLT cost per iteration: $O(r \sum_k n_k \log n_k + sr^2)$

References

Ingredient #3: Bound Leverage Scores

KRP: \(\mathbf{Z} = \mathbf{A}_d \odot \cdots \odot \mathbf{A}_1 \)

\(\mathbf{A}_1 \in \mathbb{R}^{n_1 \times r} \)

\(\mathbf{A}_2 \in \mathbb{R}^{n_2 \times r} \)

\(\vdots \)

\(\mathbf{A}_d \in \mathbb{R}^{n_d \times r} \)

\(\mathbf{Z} \in \mathbb{R}^{N \times r} \)

\(N = \prod_{k=1}^{d} n_k \)

Upper Bound on Leverage Score

Lemma (Cheng et al., NIPS 2016; Battaglino et al., SIMAX 2018):

\[\ell_i(\mathbf{Z}) \leq \prod_{k=1}^{d} \ell_{i_k}(\mathbf{A}_k) \]

Too expensive to calculate \(O(Nr^2) \)

Cheap to calculate individual leverage scores \(O(r^2 \sum_k n_k) \)

1-1 Correspondence between linear index and multi index:

\(i \in [N] \Leftrightarrow (i_1, \ldots, i_d) \in [n_1] \otimes \cdots \otimes [n_d] \)
Given linear system: \(\|ZB^T - X^T\|_F^2 \) with \(Z = A_d \odot \cdots \odot A_1 \in \mathbb{R}^{N \times r}, X^T \in \mathbb{R}^{n \times N} \)

Define sampling probabilities:
\[
p_i = \frac{1}{r^d} \prod_{k=1}^{d} \ell_{i_k}(A_k) \text{ for all } i \in [N]
\]

And random sampling matrix:
Pick \(s \) random indices \(\xi_j \) such that
\[
P(\xi_j = i) = p_i \text{ and define }
\]

Solve sampled problem:
\[
\hat{B}_* \equiv \arg \min_{B \in \mathbb{R}^{r \times n}} \| \Omega ZB^T - \Omega X \|_F^2
\]

Get probabilistic error bound:
With probability \(1 - \delta \) for \(\delta \in (0,1) \), we have
\[
\|Z\hat{B}_*^T - X^T\|_F^2 \leq (1 + O(\epsilon))\|ZB_*^T - X^T\|_F^2
\]

when number of samples satisfies:
\[
s = O(r^d \log(n/\delta)/\epsilon^2)
\]

Leverage Scores \(\ell_{i_k}(A_k) = \|Q_k(i_k,:\|_2 \) where \(Q_k \) is orthonormal basis for column space of \(A_k \)

1-1 Correspondence between linear index and multi index:
\(i \in [N] \Leftrightarrow (i_1, \ldots, i_d) \in [n_1] \odot \cdots \odot [n_d] \)
Ingredient #5: Efficient Sampling without Forming KRP

KRP: $Z = A_d \odot \cdots \odot A_1$

- $A_1 \in \mathbb{R}^{n_1 \times r}$
- $\Omega Z \in \mathbb{R}^{8 \times r}$
- i_1
- $A_2 \in \mathbb{R}^{n_2 \times r}$
- i_2
- \vdots
- $A_d \in \mathbb{R}^{n_d \times r}$
- i_d

Upper Bound on Leverage Score

Lemma (Cheng et al., NIPS 2016; Battaglino et al., SIMAX 2018):

$$\ell_i(Z) \leq \prod_{k=1}^{d} \ell_{i_k}(A_k)$$

- Too expensive to calculate $O(Nr^2)$
- Cheap to calculate individual leverage scores $O(r^2 \sum_k n_k)$

Recall probability of sampling row i

$$p_i \equiv \frac{1}{r^d} \prod_{k=1}^{d} \ell_{i_k}(A_k)$$

But still don’t want to consider all N possible combinations corresponding to all rows of Z!

1-1 Correspondence between *linear index and multi index*:

$$i \in [N] \Leftrightarrow (i_1, \ldots, i_d) \in [n_1] \otimes \cdots \otimes [n_d]$$
Problem: Concentrated sampling probabilities identify a few key rows but can lead to many repeats!

Least Squares Problems from Real-world Tensor Data Sets

Example 1: \(N = 3.2 \times 10^{12}, s = 2^{17}, \tau = \frac{1}{s} = 8 \times 10^{-6}\)

\[D = \{i : p_i > \tau\}, |D| \approx 15000, \sum_{i \in D} p_i = 0.51\]

Example 2: \(N = 8.7 \times 10^{12}, s = 2^{17}, \tau = \frac{1}{s} = 8 \times 10^{-6}\)

\[D = \{i : p_i > \tau\}, |D| \approx 10000, \sum_{i \in D} p_i = 0.41\]

Example 3: \(N = 8.6 \times 10^{12}, s = 2^{17}, \tau = \frac{1}{s} = 8 \times 10^{-6}\)

\[D = \{i : p_i > \tau\}, |D| \approx 7000, \sum_{i \in D} p_i = 0.25\]

Combining repeat rows ⇒ 2-20X speedup
Ingredient #7: Hybrid Deterministic and Randomly-Sampled Rows

\[D_\tau = \{ i \in [N] \mid p_i \geq \tau \} \]

\[s_{\text{det}} = |D_\tau| \]

\[p_{\text{det}} = \sum_{i \in D_\tau} p_i \]

for \(i \in D_\tau \) do
 add row \(A_1(i_1,:) \ast \cdots \ast A_d(i_d,:) \)
end for

\[\Omega Z \in \mathbb{R}^{s \times r} \]

Random Rows

\[s_{\text{rnd}} = s - s_{\text{det}} \]

for \(j = 1, \ldots, s_{\text{rnd}} \) do
 repeat
 for \(k = 1, \ldots, d \) do
 \(i_k \leftarrow \text{multi}(\ell(A_k)/r) \)
 end for
 until \(i \notin D_\tau \)
 \(\omega \leftarrow \sqrt{(1 - p_{\text{det}})/(s_{\text{rnd}} p_i)} \)
 add row \(\omega (A_1(i_1,:) \ast \cdots \ast A_d(i_d,:)) \)
end for

1-1 Correspondence between linear index and multi index:

\(i \in [N] \leftrightarrow (i_1, \ldots, i_d) \in [n_1] \otimes \cdots \otimes [n_d] \)
Ingredient #9: Find All High-Probability Rows without Computing All Probabilities

• Recall

\[p_i \equiv \frac{1}{\tau d} \prod_{k=1}^{d} \ell_{i_k}(A_k) \]

• For given tolerance \(\tau > 1/N \), define the set of deterministic rows to include

\[D_\tau = \{ i \in [N] \mid p_i \geq \tau \} \]

- Compute without computing all \(p_i \) values
- A few high leverage scores means all the others are necessarily low!
- Use bounding procedure to eliminate most options
- Compute products of at most a top few leverage scores in each mode

Sorted Leverages Scores (Descending)

1-1 Correspondence between linear index and multi index:

\[i \in [N] \iff (i_1, \ldots, i_d) \in [n_1] \otimes \cdots \otimes [n_d] \]
Ingredient #9: Efficiently Extract RHS from (Sparse) Unfolded Data Tensor

- Never form X^T explicitly
- Precompute linear indices for every nonzero and every mode
- Results is sparse RHS

Similar in spirit to ideas for dense tensors in Battaglino et al., SIMAX 2018
Numerical Results
Single Least Squares Problem with $N = 46M$ rows, $r = 10$ columns, $n = 183$ right-hand sides

\[
\begin{align*}
\Omega Z & \in \mathbb{R}^{s \times r} & B^T & \in \mathbb{R}^{r \times n} & \Omega X^T & \in \mathbb{R}^{s \times n} \\
\text{Sampled} & & \text{Unknown} & & \text{Sampled} & \text{Data}
\end{align*}
\]

\[
\tilde{B}_* \equiv \arg \min_{B \in \mathbb{R}^r} \| \Omega B^T - \Omega X^T \|_2^2
\]

\[
B_* \equiv \arg \min_{B \in \mathbb{R}^r} \| ZB^T - X^T \|_2^2
\]
Deterministic Can Account for Substantial Portion of Probability

Single Least Squares Problem with $N = 46M$ rows, $r = 10$ columns, $n = 183$ right-hand sides
Some Trade-off Between Accuracy and Expense for Deterministic

Random Mode: 1, Solution Factors

Hybrid Mode: 1, Solution Factors
Over 9X Speed-up for Amazon Tensor with 1.7 Billion Nonzeros

Amazon Tensor: 4.8M x 1.8M x 1.8M Amazon Tensor with 1.7B nonzeros.
Rank r = 25 CP decomposition
Over 12X Speed-up for Reddit Tensor with 4.7 Billion Nonzeros (106 GB)

Amazon Tensor: 8.2M x 0.2M x 8.1M Reddit Tensor with 4.7B nonzeros.
Rank r = 25 CP decomposition

Best Fit = 0.0589
8 hours per run
(12X faster)

Best Fit = 0.0593
96 hours per run
Conclusions & Future Work

- How to make CP tensor decomposition faster for large-scale sparse tensors? Matrix sketching
- How to avoid repeated samples? Combine repeat rows or deterministically include high-probability rows
- How to efficiently sample? Sample independently from each factor matrix to build KRP
- How to extract data for RHS from data tensor? Pre-compute linear indices for tensor fibers
- Overall result: Order-of-magnitude speed-ups
- Many open problems: How to pick # samples (per mode even), deterministic threshold, robust stopping conditions, sampling based on data as well as KRP, parallelization of method, etc.

Contact Info: Brett bwlarsen@stanford.edu, Tammy tgkolda@sandia.gov