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Abstract

Management decisions involving groundwater supply and remediation often rely
on optimization techniques to determine an effective strategy. We introduce several
derivative-free sampling methods for solving constrained optimization problems that
have not yet been considered in this field, and we include a genetic algorithm for
completeness. Two well-documented community problems are used for illustration
purposes: a groundwater supply problem and a hydraulic capture problem. The
community problems were found to be challenging applications due to the objective
functions being nonsmooth, nonlinear, and having many local minima. Because the
results were found to be sensitive to initial iterates for some methods, guidance is
provided in selecting initial iterates for these problems that improve the likelihood
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of achieving significant reductions in the objective function to be minimized. In
addition, we suggest some potentially fruitful areas for future research.
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1 Introduction

Problems involving the design of groundwater supplies and contaminant con-
tainment and removal from subsurface systems can be difficult to solve in
anything approaching an optimal fashion. The objective function of interest
is often discontinuous, nonlinear, nonconvex, and replete with local minima.
Moreover, evaluation of the objective function often requires the solution of
an approximate numerical simulation model, which can be both expensive
and subject to poor resolution of the physical phenomena of concern. Thus,
the difficulties of achieving an optimal solution for groundwater supply and
contaminant transport problems have their roots in physical aspects of the
problems of concern, which are manifest in terms of a challenging set of math-
ematical characteristics.

Two additional impediments to the advancement of optimal design approaches
exist for this class of problems. First, many potential methods exist, but most
work focuses on only a small number of available methods for an idealized
example problem, which may not have the same range of difficulty as the real
class of problems of concern. Second, many optimization methods exist that
have yet to be compared and in some noteworthy cases have yet to even be
considered by the water resources community.

In response to these observations Mayer et al. [58] proposed a set of so-called
“community problems” (CPs), which included a range of supply and remedi-
ation problems. The CPs offer a set of challenging and realistic applications
to support methods comparison and advancement. An additional hope in in-
troducing the CPs was that the existence of these problems would catalyze
the introduction of new methods into the water resource field and perhaps
unite subsets of the optimization community by stimulating the joint solution
of interesting and difficult problems with a range of methods, which in total
would be beyond the reach of any single research group in a reasonable length
of time. Overall, it was hoped that the CP’s would serve to hasten the rate of
maturation of optimization methods for important water resources problems
and improve the community’s ability to arrive at effective designs for realistic
problems.

Global solutions to the CPs have not yet been determined or even shown to
exist. However, the CPs have received consideration in the literature [32, 33],
and interest in these problems appears to be increasing in scope and frequency
[39, 43, 44, 57]. Two areas in which the CPs have yet to be successful are the
introduction of broad new classes of methods into the water resources field by
experts in mathematical optimization and comparisons of significant sets of
methods for the same problem.
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Because the CPs are realistic, they possess many of the mathematical diffi-
culties previously alluded to: they have nonsmooth, nonlinear, discontinuous,
nonconvex objective functions that have many local minima. Derivative-based
optimization methods are well known to perform poorly on problems with
these characteristics, which has given rise to an increase in popularity of ge-
netic algorithms (GAs) [38, 45, 46] and simulated annealing methods [51] in
the water resources field [19, 27, 29, 63], which do not require the evaluation
of derivatives of the objective function with respect to decision variables.

Such optimization problems arise in many other areas of science as well [9,
15, 72]. The mathematical optimization community frequently uses a class
of deterministic methods which we refer to here as sampling methods to ap-
proximate the solution of such problems [9, 15, 72]. Sampling methods do not
require derivatives of the objective function and in general rely upon a direct
search of the decision space guided by a pattern or search algorithm. Deter-
ministic sampling methods are a potentially important class of optimization
methods which have received only limited use in the water resources literature
[10, 32, 33, 39, 43, 68], and most such sampling methods have yet to be con-
sidered at all by the water resources community. These methods are different
from commonly used sampling approaches such as GAs in that there is no
randomness in the method, and there are rigorous convergence results. We
include a very robust GA in the results of this work, so that the deterministic
sampling methods can be compared to an approach that is more commonly
used in water resources.

The overall goal of this work is to introduce and evaluate several members of an
important class of optimization method by solving a subset of the CPs. The
specific objectives of this work are: (1) to detail several sampling methods
suitable for solving challenging water resources problems, such as the CPs;
(2) to evaluate the performance of the sampling methods in terms of the
solution achieved and computational effort required for a subset of the CPs
as a function of the problem specification and initial conditions; and (3) to
provide guidance for selecting an initial iterate for the CPs that improves the
performance of the optimizers.

2 Model Problems

2.1 Overview

The CPs of concern in this work are a subset of a broad class of problems
described by Mayer et al. [58, 59]. The CPs consist of model formulations
and a wide range of physical domains, objective functions, and constraints
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for a total of 30 design applications. In the sections that follow, we describe
the model problems of focus in this work and specify the hydrologic setting,
objective function, constraints, simulator, and method details and links.

2.2 Model Problems

We consider two CPs, a water supply problem and a hydraulic capture prob-
lem, which are described in Mayer et al. [58, 59]. The water supply problem is
also described by Fowler et al. [33]. The objective of the water supply problem
is to minimize the cost to supply a specific quantity of water subject to a set
of constraints. The cost involves installation and operation cost for a set of
extraction wells subject to constraints on the net extraction rate, pumping
rates, and hydraulic head. The decision variables are the {(xi, yi)}

n
i=1 loca-

tions and pumping rates {Qi}
n
i=1, of the wells, and the number of wells n. We

also considered a case in which only the locations of a fixed number of wells
pumping at a specified rate were decision variables.

The objective of the hydraulic capture CP is to minimize the cost needed to
prevent an initial contaminant plume from spreading by using wells to con-
trol the direction and extent of advective fluid flow. Several approaches exist
to model the migration of a contaminant plume, including particle-tracking
advective control, flow-based gradient control, and constraining a target con-
centration contour [2, 4]. We use a gradient control approach, which only relies
upon information from a flow solve and is common in practice [3]. To capture
the plume with the gradient control method, we impose constraints on head
differences at certain points around the plume. The decision variables for this
problem are the pumping rates {Qi}

n
i=1, the well locations {(xi, yi)}

n
i=1, and

the number of wells n ≤ Nw. Here n is the number of wells in the final design.
Since it is not clear how many wells will be needed to contain the plume,
we start with a set of Nw candidate wells and include the number of wells
implicitly as a decision variable.

2.3 Hydrological Setting

We consider a physical domain Ω = [0, 1000] × [0, 1000] × [0, 30] m. Flow in
saturated porous media is described by

Ss

∂h

∂t
= ∇ · (K∇h) + S, (1)

where Ss = 2.0 × 10−1 1/m is the specific yield, h is the hydraulic head,
and K is the hydraulic conductivity. We consider homogeneous aquifers with
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K = 5.01 × 10−5 m/s. Here the source term S represents a well model that
satisfies

∫

Ω

S(t)dΩ =
n∑

i=1

Qi. (2)

The source S is where the decision variables enter the state equations. To
describe the unconfined aquifer that applies to both CPs, we use the following
boundary and initial conditions:

∂h

∂x

∣
∣
∣
∣
∣
x=0

=
∂h

∂y

∣
∣
∣
∣
∣
y=0

=
∂h

∂z

∣
∣
∣
∣
∣
z=0

= 0, t > 0 (3)

qz(x, y, z = h, t > 0) = −1.903 × 10−8 m/s, (4)

h(1000, y, z, t > 0) = 20 − 0.001y m, (5)

h(x, 1000, z, t > 0) = 20 − 0.001x m, (6)

S(x, y, z, t = 0) = 0.0 m3/s, (7)

h(x, y, z, 0) = hs. (8)

Here qz evaluated at z = h is the Darcy flux out of the domain (the negative
value specified represents recharge into the aquifer), and hs is the steady state
solution to the flow problem without wells. The ground surface elevation for
the unconfined aquifer is zgs = 30 m.

2.4 Objective Function

We consider a capital cost f c to install a well and an operational cost f o

to pump a well, and we seek to minimize the total cost f T = f c + f o. A
negative pumping rate means that a well is extracting and a positive pumping
rate means that a well is injecting. Our simulation time is tf = 5 years. The
objective function, as proposed in [58, 59] is given by

fT =
n∑

i=1

c0d
b0
i +

∑

i,Qi<0.0

c1|Q
m
i |

b1(zgs − hmin)b2

︸ ︷︷ ︸

fc

(9)

+

tf∫

0




∑

i,Qi<0.0

c2Qi(hi − zgs) +
∑

i,Qi>0.0

c3Qi



 dt

︸ ︷︷ ︸

fo

,
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where cj and bj are cost coefficients and exponents, di = zgs is the depth of
well i, Qm

i is the design pumping rate for which we use Qm
i = 1.5Qi m3/s,

hmin is the minimum allowable head, and hi is the hydraulic head in well i.

Injection wells are assumed to operate under gravity feed conditions. In f c

the first term accounts for drilling and installing all the wells and the second
term is an additional cost for pumps for the extraction wells. In f o, the term
pertaining to the extraction wells includes a lift cost to raise the water to the
surface. The cost data is given in Table 1.

Table 1
Objective function parameters

Parameter Value Units

c0 5.5 × 103 $/mb0

c1 5.75 × 103 $/[(m3/s)b1 · mb2 ]

c2 2.90 × 10−4 $/m4

c3 1.45 × 10−4 $/m3

b0 0.3 -

b1 0.45 -

b2 0.64 -

zgs 30 m

di zgs m

Qm
i 1.5Qi m3/s

2.5 Constraints

We constrain the pumping rates and hydraulic head for the objective function
given in Eq. (9). The constraints are given by

Qemax ≤ Qi ≤ Qimax, i = 1, ..., n, (10)

hmin ≤ hi ≤ hmax, i = 1, ..., n, (11)

where Qemax is the maximum extraction rate, Qimax is the maximum injection
rate, hmax is the maximum allowable head, and hmin is the minimum allowable
head. Constraints (10) and (11) are enforced at each well. Constraint (10)
reflects physical limits on the pumps and well design. Well designs are limited
by the size distribution of the porous medium and the resulting size of the well
screen. The upper bound in constraint (11) keeps the hydraulic head below the
surface elevation, while the lower bound limits the allowable drawdown in a
well. While onstraint (11) is a linear function of the pumping rates if an aquifer
is confined (under the assumption that well losses are ignored), for this work
we implement a nonlinear representation for an unconfined aquifer model.
Moreover, constraint (11) is a highly nonlinear function with respect to the
locations of the wells, since they are varying in the course of the optimization.
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For the water supply CP, we define the total amount of water to supply as

QT =
n∑

i=1

Qi ≤ Qmin
T , (12)

where Qmin
T is the minimum allowable total extraction rate. Although not

specified in [58, 59],we require that the wells be situated at least 200 m from
the Dirichlet boundaries, given by

0 ≤ xi, yi ≤ 800 m. (13)

We should note that optimzation landscapes for the water supply problem
are shown in [33] which demonstrate the nonconvexity in (9) and also the
disconnected feasible region defined by the constraints.

For the hydraulic capture CP, we constrain the net pumping rate with

QT =
n∑

i=1

Qi ≥ Qmax
T , (14)

where Qmax
T is the maximum allowable total extraction rate.

In Mayer et al. [58] the authors leave it to the reader to choose the concentra-
tion that defines the plume boundary and to choose the constraint to capture
the plume. For this work, we chose the 5× 10−5 kg/m3 concentration contour
line as the boundary of the plume. We used a gradient control approach to
ensure capture. Although a transport simulator was used to create the initial
plume and to verify the effectiveness of the optimal point, only a flow simula-
tor was required for the optimization. A gradient constraint was formulated as
a constraint on the difference in hydraulic head values at specified locations,
such that

hk
j − hk

j+1 ≥ d, k = 1 . . .M, (15)

where hj, hj+1 are hydraulic head values at adjacent nodes and d is the bound
on the difference. Here M is the number of gradient constraints imposed
around the boundary. If hj, hj+1 are aligned in the x−directions, dividing
Eq. (15) by ∆x and multiplying by the hydraulic conductivity K yields

K

(

hk
j − hk

j+1

∆x

)

≥ K
d

∆x
, (16)

where the term on the left coincides with the x component of the Darcy
velocity of the fluid. Constraint (15) results in a disconnected feasible region

8



since this constraint in sensitive to the varying well locations. Table 2 shows
the constraint data for the two applications.

Table 2
Constraint parameters

Parameter Value Units

Qmin
T −3.2 × 10−2 m3/s

Qmax
T −3.2 × 10−2 m3/s

Qemax −6.4 × 10−3 m3/s

Qimax 6.4 × 10−3 m3/s

hmin 10 m

hmax 30 m

d 10−4 m

The installation cost of an extraction well is roughly $20,000 while the annual
operational cost is approximately $1,000. Having a pumping rate of zero in-
dicates that there is no need to install a well. However, it is unlikely that a
method will choose exactly zero. Instead, we set a threshold on the pumping
rate and we remove a well from the design if the pumping rate falls below the
threshold. The resulting objective function is discontinuous but the ability to
remove a well can greatly reduce the cost of the design.

If in the course of the optimization, a well rate satisfies

|Qi| < 10−6 m3/s, (17)

then it is removed from the design space and not included in the flow simula-
tion or cost calculations. In [43], the authors compare this approach with the
multiplicative penalty coefficient from [64] and a branch-and-bound approach
using a surrogate model on the hydraulic capture problem described above
in § 2. The results obtained when using the inactive-well threshold and the
approach from [64] did not differ significantly in terms of the optimal point
found or the computational expense. Note that although the multiplicative
approach leads to a continuous problem, finite-difference derivatives still were
used in [64] due to the black-box formulation of the problem. By black-box
formulation, we mean a decoupling of the numerical method used to approx-
imate the physics of concern from the optimization approach that is used to
approximate the design solution.

2.6 Simulator

Note that to evaluate Eq. (9) the values of the hydraulic head in the wells,
hi, must be computed for a given set of pumping rates {Qi}

n
i=1 at locations

{(xi, yi)}
n
i=1. Obtaining the head values requires a call to a groundwater flow
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simulator for a solution to Eq. (1). For this work, we used the U.S. Geolog-
ical Survey code MODFLOW-96 [61, 62]. MODFLOW is a widely used and
well supported block-centered finite difference code that simulates saturated
groundwater flow.

A MODFLOW simulation that involves wells requires a well input data file
containing the grid locations of the wells and the pumping rates. For this work,
the locations and pumping rates are decision variables and hence change as
the optimization progresses. Moreover, the optimization techniques used here
output real-valued well locations, while the version of MODFLOW used ex-
pects node numbered grid locations for sources and sinks. Hence each function
evaluation required rounding the well locations to grid points, which creates a
step function, and writing a new well file containing the current well locations
and pumping rates. Once the well file was created, a call to the MODFLOW
executable simulated the flow system and the values of hi were extracted to
evaluate Eq. (9).

To generate the initial plume, as described in [59], we simulated plume de-
velopment from a finite source for t ∈ [−ts, 0], ts = 1.58 × 108 s, with a
source concentration of 1 kg/m3 located physically in the region bounded by
[(200, 225); (475, 525); (h, h−2)] m. To simulate contaminant transport we used
MT3DMS [73], a widely used contaminant transport package that is designed
to interface with MODFLOW flow.

3 Optimization Methods

All of the optimization methods we consider in this paper use only function
values to guide the minimization of Eq. (9). By this, we mean that the opti-
mization is controlled by evaluating the objective function and constraints at
points in design space, and those evaluations are used to decide what to do
next. All but the GA have an explicit resolution or level, which changes as the
optimization progresses. In most of the methods, this means that the size of
a stencil or pattern upon which the search is based is reduced.

The optimization methods considered in this paper have several common fea-
tures and strategies, which we use as a way to describe the methods. This set
of methods was chosen from a wide range of applicable derivative free methods
with the goal of testing algorithms each with different strengths, which we em-
phasize in the discussion that follows. We will not describe detailed technical
features or convergence theory of these method, but refer the reader to the
papers we cite below.

10



The methods are:

• APPS (Asynchronous Parallel Pattern Search) [47, 52, 53, 54] from Sandia
National Laboratories;

• DE (Boeing Design Explorer) [1, 9, 13, 18] from the Boeing Company;
• DIRECT (DIviding RECTangles) [48] with implementations from North

Carolina State University [30, 34, 35, 36] and others [11];
• IFFCO (Implicit Filtering for Constrained Optimization) [16, 37, 50] from

North Carolina State University;
• NOMAD (Nonlinear Optimization for Mixed vAriables and Derivatives)

[8, 17] from Rice University, the Air Force Institute of Technology, and the
Ecole Polytechnique de Montréal; and

• GA (NSGA-II: Non-dominated Sorting Genetic Algorithm) [25, 74] from
Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology.

Of these, only DE is a commercial product. The other codes we used in this
paper are easily available. All of these codes are well-documented, being up-
dated, and the versions the reader may download could well be more general,
robust, and efficient than the versions we describe here.

3.1 Search-Poll Paradigm

We begin the discussion of the optimization methods by first considering the
mesh/stencil based methods: NOMAD, IFFCO, DE, and APPS. These meth-
ods use a conceptual discretization of the space of decision variables into a
stencil or pattern of points. For IFFCO and APPS, the discretization is only
local, i.e. defined only near the current approximation to the solution, but for
NOMAD and DE, it is global, i.e. a grid defined on all of design space. This
distinction can be explained in terms of a search-poll paradigm. The general
idea is that a search step allows a great deal of freedom in seeking a better
point with the understanding that if this fails to produce improvement, then
the algorithm will fall back on a local poll of nearby points before allowing a
smaller step to be tried.

For our purposes, a mesh is an iteration dependent, global discretization of
the decision variable space. The meshes in the structured algorithms must
satisfy certain technical conditions [7, 56] in order for the convergence theory
to hold. The most important of these is that the directions in the stencil be
a positive spanning set: a set of n + 1 or more directions whose nonnegative
linear combinations span the decision space [56]. Results here are given for
versions of NOMAD using n + 1 and 2n such directions. NOMAD, IFFCO,
and APPS sample points in a search phase seeking a better point (i.e., one
with a lower objective function value).

11



If the search succeeds, the mesh/stencil stays the same size for the next iter-
ation. But, if the search fails to find a better point, then a local stencil/mesh
search is carried out (the poll step) to see if a better point can be found by
steps of the current size in the current positive spanning set of directions. If
so, the current sizing parameter stays the same or is increased for the next
iteration. But otherwise, the sizing parameter is decreased, usually by a factor
of two. DE uses surrogates during the search step to find promising points.
These are found by solving several local optimization problems from different
starting points on the surrogates, and by finding surrogate refinement points.
The solutions of the local optimizations and the surrogate refinement points
are then evaluated with the simulation. This is the search phase of DE. If no
progress has been made as measured by a filter, DE performs a poll step on
the 2n coordinate directions [9].

The situation is different for IFFCO. IFFCO begins an iteration by evaluating
the function at all the points required for a poll step. This sounds profli-
gate, but it is not. The idea is that this information provides an estimate
of the gradient of the objective function. The Hessian estimate is provided
by a quasi-Newton update [26, 50]. This provides a quadratic surrogate, or
model, of the objective function that is used in the search step. If the search
step fails, then the complete polling information is already at hand. If a bet-
ter point was found in the poll, then it is taken, and otherwise the stencil
size is reduced for the next iteration. In other words, the algorithm uses a
large finite difference stencil at first and then reduces the stencil size as the
optimization progresses to hopefully acheive the fast convergence of the under-
lying quasi-Newton method. APPS is a parallel generating search set method
that, when running in parallel, reduces the step-size independently along each
direction, enabling efficient utilization of parallel resources. For bound con-
strained problems, such as those considered in this paper, APPS and IFFCO
use the coordinate directions to define the search pattern, and this gave them
an advantage in some of the results we report in § 4.

3.2 Unstructured Searches

DIRECT is a deterministic sampling algorithm that was first introduced in
[48], motivated by a modification to Lipschitzian optimization. It was created
in order to solve difficult global optimization problems with bound constraints
and a real-valued objective function. DIRECT systematically searches for the
minimum by dividing the feasible region into hyper-rectangles. The algorithm
continues the search by choosing some of the hyper-rectangles to sub-divide; a
decision that is based on the size of the hyper-rectangle, and the value of the
function at its center. After hyper-rectangles are subdivided, the new centers
are sampled and a new iteration begins. The algorithm terminates when a
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given budget of function evaluations has been exhausted. A modified version
of DIRECT, named DIRECT-L [30], is utilized in this study. The DIRECT-L
algorithm biases DIRECT towards local searches (at the expense of the global
search), and can improve convergence rates for some problems. A detailed
description can be found in [30, 35, 48].

A genetic algorithm is a search technique that is inspired by evolutionary bi-
ological processes such as mutation, inheritance, selection, and crossover [38].
In this work, we use the non-dominated sorting genetic algorithm NSGA-II,
which is described in [20, 23, 25, 74]. Although a variety of genetic algo-
rithms exist, the NSGA-II has been applied to both single and multi-objective
problems for a wide range of applications including those in water resources
management [66]. Here, we consider a single-objective use of the NSGA-II,
which incorporates both real- and binary-coded variables, and uses binary
tournament selection [21]. For the real-coded variables, the simulated binary
crossover (SBX) operator [21, 22] with polynomial mutation is used while
single-point crossover with bitwise mutation are used for binary-coded vari-
ables.

Parameters like the population size, number of generations, as well as the
probabilities and distribution indexes chosen for the crossover and mutation
operators effect the performance of a GA [60, 67]. The population size of 30 was
the lower bound of the suggested range, while a maximum of 30 generations
were allowed. The crossover and mutation operator parameters were chosen
based on the performance of NSGA-II for a multi-objective test problem with
several local Pareto-optimal fronts [24]. We performed a limited number of ex-
periments with other crossover and mutation operator parameter settings, but
found no combination that gave better performance across the test problems
considered here.

3.3 Constraints

We differentiate between three classes of constraints present in the problems.
There are bound constraints such as the limits on the pumping rates and
locations given by Eq. (10) and (13). All the methods here incorporate bound
constraints into definition of the algorithms.

The next class of constraints are simple linear constraints such as the limit
on the net pumping rates given by Eq. (12) or Eq. (14). The versions of the
stencil-based codes (APPS, DE, IFFCO, and NOMAD) used in this paper
handle linear and nonlinear constraints by the simple expedient of rejecting
any infeasible point as a possible next iterate without even evaluating the ob-
jective function. DIRECT also handles linear constraints in this way. In the
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DE search step, the local optimization method on the models enforces linear
constraints, and surrogate refinement points are also required to satisfy linear
constraints. In the poll step, points violating linear constraints are handled the
same way as by the other stencil based methods.This approach has been rig-
orously justified for linear constraints in the cases of NOMAD, DE, DIRECT,
and APPS, given certain conditions on the pattern [14, 30, 31, 42, 55]. This
result is almost surely true for IFFCO as well, but the analysis has not been
reported.

There are also more complex nonlinear inequality constraints as in Eq. (11). Of
the specific codes tested here, only DIRECT [30, 31], can be shown rigorously
to work for nonlinear constraints by the above simple “barrier” approach of
declaring an infeasible point to be unacceptable as a next iterate. Rigorous
analysis, while not directly linked to performance, is important for under-
standing behavior of the algorithm. Such analysis can assist in evaluation,
tuning, and debugging by eliminating possible failure modes. The results in
[30, 31] use the analytical methods of [8].

Another way some of the methods treat nonlinear constraints is by replacing
the objective function by a penalty function, i.e., by minimizing an uncon-
strained objective consisting of the objective function plus a penalty con-
stant times a measure of the aggregate constraint violation. The choice of
the penalty constant is problematic, especially for the methods here which
do not use any constraint derivative information. Furthermore, this procedure
vaguely requires the penalty function to be “sufficiently large” for the `1 norm
of the constraint violations, and it is required to increase to infinity for the
`2 norm aggregate constraint violations. Both the GA and DIRECT used this
approach to handle constraints for this work. DE uses surrogates of the con-
straints in the search phase for both the local search on the surrogates, and
the surrogate refinement.

All of the methods have some way to deal with a point at which the evaluation
of the constraints or objective function fails. These methods are described
in the references for the various algorithms, and are important parts of the
optimization, since these failures are not uncommon. Such a failure could
be caused by a failure to converge for an internal iteration in the simulator,
for example. While we saw no such failures in the computations reported in
this paper, we used this feature in the codes to efficiently handle the linear
constraints on the pumping rates. That is, if an optimizer selects a set of
pumping rates that does not meet the net pumping rate constraint, then the
simulator was not called and the function evaluation was declared a failure.
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3.4 Surrogates

A surrogate is a function that can be used as a stand-in during the search
phase for the expensive objective function and constraints used to define the
optimization problem. The idea is to use a surrogate that is much cheaper
to evaluate that the real objective function. We do not call it an approxima-
tion because this implies some effort to make the surrogate approximate the
function, and yet popular surrogates can not be guaranteed to be close to the
function they replace in the search phases of the optimization. NOMAD can
be used with surrogates, but this was not done for the results in this paper.

DE uses Kriging models as surrogates. To build these models, the simulation
is evaluated at points given by a DACE (Design and Analysis of Computer
Experiments)[12, 13] experiment. These models interpolate the true responses
at points used to build the model, and indicate global trends over the full
design space. DE updates the Kriging models with new data during an op-
timization. To prevent problems with conditioning when points accumulate
near each other during an optimization a modification of the standard Krig-
ing models is used in DE [1].

At the other end of the spectrum are the local Taylor series based quadratics
used by quasi-Newton methods. There, one matches the true gradient with
the surrogate gradient at the current point, and so the surrogate, which is
generally called a local model in this case, resembles the objective function
with increasing accuracy as the distance to the current point decreases.

Between these two extremes lie the quadratic surrogates used by IFFCO.
IFFCO begins each iteration by evaluating the objective on a stencil defined
by a current stencil size parameter and a positive spanning set of directions.
These values are used to build the gradient of the quadratic surrogate. The
Hessian is updated by either the SR1 or BFGS update [26]. As the iteration
closes in on an optimal solution, the stencil size becomes smaller, and so the
approximation becomes more like the Taylor series local model, when it exists.

3.5 Termination

All of the methods will terminate if a budget of function evaluations has
been exhausted. In most instances, the total number of function evaluations
is checked against the budget only after an iteration is complete, so the final
number of function evaluations can be over the budget.

The stencil-based methods (APPS, IFFCO, NOMAD, DE) also terminate
when the stencil reaches a minimum size. The defaults in the codes vary.
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However, for this application, the codes were set to terminate when the stencil
size was equivalent to the resolution of the spatial grid in the simulator.

3.6 Scaling

The components of the vector of decision variables u can differ significantly in
magnitude. The five orders of magnitude difference between pumping rates and
physical locations is one example. Such poor scaling can cause the optimization
to stagnate well before finding a good solution. To remedy this, most of the
methods scale u to a reference domain. For example, IFFCO, APPS, and
DIRECT scale u so that all lower bounds are 0 and all upper bounds are 1.
DE requires the user to provide an appropriate scaling, both for the variables,
and also for the objective and all constraints.There can also be scaling issues
with the constraints, but we did not see problems with constraint scaling in
this work. As a general rule, one should try to scale the constraints so that
the constraint violations reflect the relative amounts of infeasibility one feels
are appropriate for the particular initial iterate.

4 Results

4.1 Overview

A variety of numerical experiments were performed to evaluate the derivative-
free optimization methods of focus in this work. Specifically, we considered the
water supply CP and the hydraulic capture CP. We also considered alternative
approaches to posing the optimization problem by varying the set of design
parameters and the initial iterates. Initial iterates were of interest because
of the complex nature of the feasible solution space and the need of APPS
and IFFCO for a feasible initial iterate. Although in practice, determining a
feasible initial iterate can prove challenging since the knowledge of a feasible
solution is not even known a priori, we do not consider it a significant limitation
for the applications of concern here.

When comparing optimization methods, multiple aspects of the solution are
important, which complicates such comparisons. An obvious metric of interest
is the quality of the solution obtained, which in this case is measured by the
value of the cost function that is minimized for each application. Exact global
solutions to the community problems have not been published although local
minima have been shown to exist for the water supply problem [33]. Assuming
all methods achieve the same minimum cost, the computational effort needed
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to achieve the solution, which we measure in terms of function evaluations,
is another metric of primary importance. For difficult problems such as those
considered in this work, it is not expected that all methods will obtain the
identical cost function value, which complicates the comparison of methods.
To aid such comparisons, we present results in terms of the cost profile as a
function of the number of function evaluations.

In addition, the initial feasible iterate, problem formulation, and method spe-
cific settings can all affect the results achieved. We examined the effect of the
initial iterate and the problem formulation, but we avoided detailed tuning
of settings in the methods. Changes in parameter settings for the individ-
ual methods or changes in the algorithms for any of these methods could, of
course, change the results. Indeed, one of the objectives of this work was to
catalyze such algorithmic advancements. Since APPS was the only parallel
implementation of the algorithms tested, we do not compare run times, rather
the parallel version of APPS was used only to demonstrate the asynchronous
nature of the search phase.

We used MODFLOW to simulate the unconfined flow field for the domain
described in § 2.3 using an equally spaced 50 × 50 × 10 grid in the x × y × z

directions. Wells were simulated by assigning a stress to a set of grid blocks
corresponding to the rounded location of the wells. The initial conditions for
both problems required a steady state simulation for an unconfined flow prob-
lem, which is depicted in Figure 1. The head field depicted in this figure
corresponds to the value in the fourth layer from the top of the domain, since
under these boundary conditions the top three layers are dry. These dry layers
were included in the model to allow for local increases in head due to injection,
which was needed to resolve the initial conditions for the hydraulic capture
CP.

4.2 Water Supply Problem

4.2.1 Five-Well Design

It is easy to prove by examination of the objective function and constraints
that a feasible solution to the water supply CP requires a minimum of five
wells, and the number of wells in the optimal solution is the minimum needed
to obtain a feasible solution. For Nw = 5, the extraction rates of all wells
must be {Qi}

5
i=1 = −0.0064 m3/s to satisfy the constraints. Based upon these

observations and the need of APPS and IFFCO for a feasible initial iterate,
we searched a five-well design space using the fixed MODFLOW discretization
summarized above. We found feasible solutions in this space, but the feasi-
ble region was sparse and the landscape complicated. Because the number of
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Fig. 1. Steady state head distribution in meters.

wells and their pumping rates are fixed in this scenario, ten decision variables
remain, which are the optimal locations {(xi, yi)}

5
i=1 of the wells.

Table 3 shows the function value obtained at the initial iterate, the minimum
function value, and the number of function evaluations performed by each
optimizer before the termination criteria were met. Table 4 shows the initial
(x, y) coordinates for the five wells and the optimal locations, which have been
rounded to the nearest grid location. Figure 2 shows the value of the objective
function as a function of the number of function evaluations for each of the
methods considered. We used the initial iterate for APPS and IFFCO, which
required such a point. We also used the initial iterate for the two versions of
NOMAD, which was not strictly required. DIRECT-L, GA, and DE did not
rely upon the initial iterate.

Table 3
Optimal solutions for the five-well water supply CP

Method Minimum f Number of Function

Evaluations

Initial Iterate $ 127,421 —

IFFCO $ 125,129 165

DIRECT-L $ 125,085 648

NOMAD(2N) $ 124,386 539

NOMAD(N+1) $ 124,389 346

GA $ 124,386 925

DE $ 125,598 510

APPS $ 124,427 117
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Table 4
Optimal well locations for the five-well water supply CP

Initial Iterate IFFCO DIRECT-L NOMAD NOMAD GA DE APPS

(m) (2N) (N+1)

x(1) 360 160 200 160 160 160 180 200

y(1) 720 800 800 800 800 800 780 800

x(2) 780 800 800 800 800 800 780 800

y(2) 7800 800 800 800 800 800 800 800

x(3) 680 320 560 460 460 460 580 520

y(3) 680 800 800 800 800 800 740 800

x(4) 200 680 280 800 800 800 780 800

y(4) 200 800 380 460 440 460 340 480

x(5) 720 760 800 800 800 800 680 800

y(5) 340 240 200 140 140 120 200 140
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Fig. 2. Solution profiles for five-well water supply CP. Note that the GA is not
seeded.

4.2.2 Five-well Discussion

If viewed in terms of the total cost, the optimal solutions differed by less
than 1%. This is a bit misleading because the fixed cost represented about
80% of the total cost. The initial iterate was about 10% higher in operational
cost than the best solution found. The magnitude of these numbers would of
course be shifted if the design life was increased or if a different initial iterate
was used. Thus care is needed in interpreting these results. Nonetheless, some
aspects of these results warrant note.
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First, NOMAD and the GA achieved the lowest cost, followed closely by APPS.
DE returned the highest cost, but still a good design by most reasonable
standards. IFFCO stagnated prematurely, exhausting its set of stencil sizes.
Further numerical experiments showed that a single restart would remedy that
stagnation. DIRECT and Design Explorer also terminate prematurely but
did result in solutions with the wells moved to the prescribed head boundary
conditions.

Second, the optimal designs returned by NOMAD and the GA differ by one
grid block for two of the wells, but are otherwise the same. The APPS design,
while nearly as good as the best solution found, differed in the location of some
of the wells compared to NOMAD. This is consistent with our observation that
within the feasible region, the objective function was not highly sensitive to the
location of the wells, meaning relatively flat regions exist in the feasible region
landscape. Designs returned by the other methods varied as well. However,
APPS used the smallest number of function calls before exhausting its stencil
budget. This demonstrates the strength in APPS asynchronous structure.

Third, the solution profiles shown in Figure 2 show that up to the termination
point of APPS the lowest cost design for a given number of function evaluations
was achieved by this method. NOMAD and the GA achieved slightly lower
objective function values but required significantly more function evaluations
to do so. It can also be observed from this figure that in general the solution
profiles for the methods that were seeded with a feasible initial iterate showed
a more efficient solution than the methods that were not seeded with the
initial iterate. By efficiency we mean the objective function value achieved for a
specified number of function evaluations. This appears to be a slight advantage
over DIRECT, DE, and GA which spend a considerable time searching for the
feasible region during the preliminary phases of the optimzation.

4.2.3 Six-Well Design

We also considered a problem formulation that did not rely on the observa-
tion that five wells operating at the maximum extraction rate satisfies the
water supply constraint exactly. Specifically, we considered the case in which
the initial design consisted of six wells. In order to find a solution that was
competitive with the five-well design, it would be necessary to eliminate one
of the wells from the design, thus recovering the discrete capital cost. This
proved to be an extremely difficult problem. Rather than reporting the results
in detail for this work, we note some general findings.

The six-well formulation is particulary sensitive to the well locations in terms
of violating the drawdown constraint given by Eq. (11). To understand the
properties of a good initial iterate, we first considered the water supply CP
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with the confined aquifer as described in [58]. In contrast, this hydrological
setting results in fewer constraint violations but maintains the challenge of
identifying the five-well solution in the course of the optimization [33]. We
generated a suite of other initial iterates using the DIRECT algorithm and
a cluster analysis. To generate that set of starting points, the problems were
reformulated so the objective was feasibility. Given a function evaluation bud-
get of 50,000, DIRECT found approximately 5,000 feasible points. This set of
data was then analyzed with the Agglomerative Nesting (AGNES) clustering
algorithm to determine a smaller set of representative feasible points [49]. All
methods that did not rely upon or were not supplied with an initial iterate
failed to find a five-well solution. For the methods that were provided with an
initial iterate, (APPS, IFFCO, and NOMAD) no method succeeded in finding
a five-well solution for most of the 135 initial iterates that we investigated.

It was straightforward to include an integer variable in the GA formulation,
the value of which determined if five or six wells were active and which well
was excluded in the five well case. With this simple change, the GA was able
to obtain a good five-well solution when seeded with a good initial iterate.

The notion of a good initial iterate requires some discussion. Because of the
complexity of the landscape and the need to eliminate one well from the six-
well initial design, naive attempts at initial iterates will fail in most cases;
we tried 135 cases that failed in this work. If one starts with pumping rates
that meet the minimum quantity constraint, which seems sensible, then in
order to eliminate a well five of the rates must increase and the remaining
rate must approach zero. This will cause an increase in the objective function
that cannot be characterized as high frequency, low amplitude noise. Thus
sampling methods are not likely to find the solution region while searching
among the small, disconnected feasible regions.

Based on these observations, our approach to providing a good initial iterate
is to specify at least five of the wells with the maximum possible rate. Thus
to eliminate a well from the design only one of the wells needs to be reduced
in the rate of pumping. Put another way, such an iterate positions one on a
continuous portion of the feasible region with a downward path toward the
optimal region. We tried a small set of initial iterates that met this criterion
for the unconfined six-well formulation and in each case APPS and IFFCO
returned a good design while NOMAD succeeded in some of the cases. These
solutions were obtained typically within 200 function calls for APPS, IFFCO,
and NOMAD while the GA was usually higher. This supports the observation
made in the five-well discussion that methods using a feasible initial iterate,
which is chosen with attention to the nature of the objective function, can
result in a more efficient optimization performance.

The six well water supply formulation is more challenging since minimization
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relies on satisfying the inactive-well threshold and thereby removing a well
from the design space. This challenge is also addressed in [33] in which ini-
tial designs containing up to 16 candidate wells were considered for the water
supply CP. The GA is the only optimizer used in this study that has a di-
rect method for handling the integer variable in determining the appropriate
number of wells. However, given an initial iterate as described above, APPS,
IFFCO, and NOMAD are competitive.

4.3 Hydraulic Capture Problem

4.3.1 Baseline Iterate

For the hydraulic capture problem, we sought to minimize Eq. (9) over all the
possible decision variables, n, {Qi}

n
i=1, and {(xi, yi)}

n
i=1. We imposed M = 5

head difference constraints in Eq. (15) around the perimeter of the plume in
the fourth layer from the top of the domain and used a value of d = 10−4 m/s.
We used a 100×100 grid for this MODFLOW implementation. The relative
(x, y) locations of the constraints are found in Table 5 and are shown in Figure
3. Previous work has also used a similar gradient-based constraint approach
[32, 39, 43, 57].

Table 5
Gradient constraint locations

x (m) y (m)

180 730

240 770

330 740

390 650

380 540

The initial iterate for the hydraulic capture CP is shown along with the initial
plume location from the MT3D simulation in Figure 3. This iterate included
two injection and two extraction wells for Nw = 4 candidate wells. The in-
jection wells were initialized at Qimax = 0.0064 m3/s and the extraction wells
were initialized at Qemax = −0.0064 m3/s. We located the extraction wells
within the interior of the plume and the injection wells down gradient of the
plume as noted in the figure and listed in the first column of Table 6. The
initial iterate was verified to meet the constraints and the objective function
of the design was evaluated. The (x, y) coordinates of the initial well design
are found in Table 7.

Table 6 shows the function value obtained at the baseline iterate, the minimum
function value and the number of function evaluations performed by each
optimizer before the termination criteria were met. Table 7 shows the initial
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(x, y) coordinates and pumping rates for each well and the resultant design
returned by each method with the locations rounded to the nearest grid block.
Figure 4 shows the value of the objective function as a function of the number
of function evaluations for each of the methods considered. We used the initial
iterate for APPS and IFFCO, which required such a point. We also used the
initial iterate for the two versions of NOMAD and the two versions of the
GA, which was not strictly required. The two versions of the GA correspond
to formulations with and without integer variables for disabling wells. The
mixed-integer formulation was implemented as described for the water supply
CP. DIRECT-L and DE did not rely upon the initial iterate.

4.3.2 Hydraulic Capture Discussion

Results summarized in Table 6 show that the lowest cost designs were found by
IFFCO, the mixed-integer GA, and APPS, respectively with all three designs
significantly better than the baseline initial iterate because they were able
to reduce the design to a single pumping well. The IFFCO design was the
lowest cost because it reduced the pumping rate significantly below the value
originally specified, where the GA and APPS did not accomplish this design
aspect. The location of the single well was, however, similar for all three of
these methods. For those three designs, the well locations differ by at most
two MODFLOW grid points in either the x or y direction. The solutions with

23



Table 6
Baseline solutions for the hydraulic capture CP

Method Minimum f Number of Function

Evaluations

Initial Condition $ 80,211 —

IFFCO $ 23,421 385

DIRECT-L $ 49,549 592

NOMAD(2N) $ 50,797 168

NOMAD(N+1) $ 50,574 94

GA (real) $ 54,973 930

GA (mixed-int) $ 24,870 930

DE $ 68,238 665

APPS $ 25,018 111

Fig. 4. Solution profiles for hydraulic capture CP. Note that the GA is seeded.
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one extraction well are comparable to those found in the literature for this
problem [32, 39, 43, 57]. DIRECT-L, NOMAD, the real GA, and DE all had
solutions with much larger objective function costs due to the inclusion of
at least two wells in the final design. Figure 4 shows that IFFCO was the
most efficient solution method followed by APPS and the GA. All solution
profiles show the discrete nature associated with the reduction in capital cost
associated with eliminating a well from the design.

The hydraulic capture problem has the additional difficulty of enforcing the
head gradient constraint to contain the plume while simultaneously removing
wells to decrease the installation cost. Only IFFCO, APPS, and the mixed-
integer GA were able to find the optimal design. The GA using a strictly
real-variable formulation, that is using (17) to handle the number of wells
instead of using integer variables, was unable to find the optimal design for
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Table 7
Baseline solution details for hydraulic capture CP

Method x (m) y (m) Q (m3/s)

Initial Iterate 150 750 0.0064

400 750 0.0064

250 650 -0.0064

250 450 -0.0064

IFFCO — — 0.0

— — 0.0

260 640 -0.0053

— — 0.0

DIRECT-L 170 170 -0.0043

— — 0.0

170 500 -0.0043

— — 0.0

NOMAD (2N) — — 0.0

— — 0.0

380 730 -0.0064

290 310 -0.0064

NOMAD (N+1) — — 0.0

— — 0.0

330 650 -0.0064

650 270 -0.0064

GA (real) — — 0.0

350 910 0.0057

980 740 0.0020

250 610 -0.0060

GA (mixed-int) — — 0.0

— — 0.0

— — 0.0

240 620 -0.0063

DE 230 670 -0.0048

300 770 0.0024

570 450 0.0020

660 370 0.0048

APPS — — 0.0

— — 0.0

250 650 -0.0064

— — 0.0

the hydraulic capture problem even with a seeded initial iterate. In terms of
reliablity, the sampling methods will return the same result for the same initial
iterate, which is not the case for a GA since randomness is inherent in the
algorithm. The sensitivity of the GA to the random seed is also a problem.
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Given the same initial iterate, APPS and IFFCO were able to choose the
appropriate number of wells and terminated based on a scaling budget, using
fewer function calls than the GA. NOMAD, however, turned off two wells,
and did not turn off the third well. The reason for this is that NOMAD
terminated prematurely based on a small stencil size. A larger initial stencil
or one centered at a point where all wells are pumping at their maximum rates
might correct this problem.

DIRECT terminated with a suboptimal solution when its budget of function
evaluations had been exhausted. Since DIRECT will sample densely in design
space if given an infinite budget, DIRECT would have found a one-well solu-
tion if given a sufficient budget. The GA would likely have done so as well.
DIRECT and DE do not permit seeding the optimization with good points,
which put them at a disadvantage.

For the hydraulic capture problem, Design Explorer was unable to build a
surrogate model within the given function evaluation budget that captured
the features of the objective function. This particular difficulty was due to
the narrow region of decrease defined by the inactive-well threshold. However,
surrogate model approaches are gaining popularity in this field, and should
not be discarded as possibilities. See [43, 68] for example.

4.3.3 Robustness of Design

To evaluate the robustness of the design for the hydraulic capture CP, we
evaluated the sensitivity of the results to the initial iterate and other factors.
We evaluated the sensitivity of the solution achieved by APPS and IFFCO
to the initial iterate. We excluded the GA from this analysis because the
mixed-integer formulation achieved an optimal design with or without an ini-
tial iterate for this case. Similarly as described in § 4.2.3, for this application
we generated a set of 65 initial iterates using the DIRECT algorithm and a
cluster analysis. Neither of these methods were able to make significant im-
provement on this set of starting points for the hydraulic capture application
and converged to local minima with all four wells operating at relatively low
pumping rates.

Following reasoning similar to that used for the six-well water supply CP
design, we generated two additional initial iterates. Table 8 gives the initial
locations and well rates. Initial Iterate A had one injection well outside the
plume, operating at Q = 0.0064 m/s3, two extraction wells in the interior of
the plume operating at Q = −0.0064 m/s3, and one extraction well behind the
plume where the head values are higher operating at Q = −0.0032 m/s3. Initial
Iterate B has a similar configuration as the one in Figure 3 (same pumping
rates) but the wells are spaced further apart. APPS was able to generate a
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near-optimal one-well design for both of these cases, as was IFFCO with the
caveat that the IFFCO result required two restarts of the algorithm for initial
iterate A and a single restart of the algorithm for the initial iterate B. The
IFFCO restarts led to the lowest cost designs but required many more function
evaluations than APPS. For both APPS and IFFCO, the number of function
evaluations was still roughly half the number needed by the mixed-integer GA
for the baseline case.

Table 8
Additional initial iterates for hydraulic capture CP

Parameter Iterate A Iterate B

x(1) (m) 250 400

y(1) (m) 800 750

Q(1) (m3/s) 0.0064 0.0064

x(2) (m) 250 650

y(2) (m) 300 650

Q(2) (m3/s) -0.0064 0.0064

x(3) (m) 250 650

y(3) (m) 650 250

Q(3) (m3/s) -0.0064 -0.0064

x(4) (m) 250 250

y(4) (m) 450 200

Q(4) (m3/s) -0.0064 -0.0064

To investigate the behavior of the GA in more detail, we examined the sensi-
tivity of the solution to a random seed and found that the results were sensitive
to this value. The GA failed to return the optimal design for nine out of 10
different random variables chosen. This sensitivity was not necessarily surpris-
ing given that the population size and number of generations (both 30) were
at the low end of the range typically suggested for GA’s. Increasing both the
population size and the number of generations yielded near optimal designs
for 10 different random seeds with no initial iterate. Of course, running the full
number of generations with this population size required 104 function evalua-
tions, even though one-well designs were obtained after 30 generations (3000
function evaluations) for each seed.

5 Conclusions

Deterministic sampling methods have not been widely used in the water re-
sources community to compute optimal solutions. Several methods from this
class were introduced and compared. Part of the motivation for this work is the
fact that gradient based methods are not applicable to the problems presented
here. For the five well problem (the easiest of the test suite here), we exam-
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ined the performance of one gradient-based code, the FDNIPS solver from
the OPT++ v2.0 [65] framework. This code is a nonlinear interior point code
based on the work in [5, 6, 28]. The code uses finite difference gradients, either
trust region or line search globalization, and a choice of three merit functions.
We tried several combinations of the options. In every case the optimization
failed after 1000 calls to the function or failed because the line search had
reduced the step length 40 times without a sufficient decrease in the merit
function.

However, we showed that this suite of derivative-free optimizers can be applied
in an off-the-shelf manner using default parameters and, in most cases, obtain
a significant decrease in cost. Moreover, the promising results presented here
do not reflect the benefits that could arise from algorithm tuning. For ex-
ample, numerical experiments showed that simple restarts with IFFCO made
a significant difference on the hydraulic capture problem for a subset of the
initial iterates.

An appropriate initial iterate was found to be an important part of the prob-
lem specification for certain methods. Guidance is provided to generate iterates
that performed well for the experiments that were performed in this study.
APPS, NOMAD, and IFFCO were found to provide good designs and efficient
solutions when supplied with an appropriate initial iterate. The mixed-integer
GA method was shown to be robust, but generally less computationally effi-
cient than the best sampling methods. The methods that did not make use
of feasible initial iterates did not succeed on the hydraulic capture problem.
These findings indicate that a hybrid approach that combines the fast local,
search of a stencil based method with the global search of a heuristic method is
warranted. Such hybrid approaches are already appearing in the groundwater
literature [70, 71].

The inclusion of the fixed costs posed a significant challenge. For example,
the surrogate approach followed by DE was unable to model the inactive
well-threshhold. However, both [69] and [64] show that realistic realistic cost
functions lead to better solutions, especially when remediation horizons are
short. The advantage of the mixed-integer GA over the methods relying on the
inactive-well threshhold implies that alternate methods for determing the ap-
propriate number of wells is warranted. Methods that choose the appropriate
number of wells while simultaneously taking advantage of the fast conver-
gence of the stencil based methods or the compuational efficiency of surrogate
models are attractive. We should note that although NOMAD is capable of
handling categorical variables, for comparison sake, that problem formulation
was not considered. Methods for handling fixed costs directly and through the
enhancement of the algorithms compared here is a topic of future work.

Algorithm maturation is expected for all methods and is already underway
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for some of the methods. These algorithmic changes can reasonably be ex-
pected to improve performance on this challenging set of test problems. The
work presented herein provides a baseline for the efforts of others to develop
and refine optimal design tools for the community problems and other water
resources problems.

Finally, we have provided a set of solution approaches for an interpretation
of the CPs. The inactive-well threshhold, the rounding of well locations to
grid points, the choice of MODFLOW as the simulator, and the spatial dis-
cretization are all specific to this work. The CPs offer an opportunity to study
multiple aspects of how problem formulation, implementation, simulation, op-
timzation modelling, and the optimizer effect the solution of underlying man-
agement problem. This work is a preliminary attempt at that larger effort.

5.1 Downloads

To facilitate the work of others, a web site was created that includes problem
details and links to simulators and optimizers for the two CPs of concern in
this work

http://www4.ncsu.edu/~ctk/community.html

While many other simulation and optimization approaches are possible, the
links provided yield a simple starting point for some of the methods considered
in this work.
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A Software

Implicit filtering codes are available in both FORTRAN and MATLAB from
http://www4.ncsu.edu/~ctk/iffco.html.

We used the FORTRAN version in this work. The MATLAB code is under
development and when finished will replace the FORTRAN code.

The version of NOMAD used in these tests is C++ optimization software
based on the generalized pattern search (GPS) algorithm. Both C++ and
MATLAB implementations are available from
http://www.gerad.ca/NOMAD/

Design Explorer is a suite of experimental design, modeling and optimization
tools for use with computer simulations. A typical DE modeling session in-
volves defining the problem, the design objectives, and identifying the input
and output parameters of the system. Design Explorer is set up to run the
simulation automatically. For information on obtaining Design Explorer con-
tact Howard Lohr at
howard.c.lohr@boeing.com.

The FORTRAN implementation of DIRECT that was used to obtain the
results presented in this paper can be obtained from
http://www4.ncsu.edu/ ctk/iffco.html.

In addition, a MATLAB implementation can be found at
http://www4.ncsu.edu/ ctk/Finkel Direct/

and an alternative MATLAB implementation is part of the TOMLAB package
[11].

NSGA-II is implemented in C and is available for downloading from
http://www.iitk.ac.in/kangal.

The user is required to implement problem-specific routines for evaluating the
objective function and constraints.

APPSPACK is a C++ implementation of APPS that can be used in serial
mode or in parallel with MPI. It can be obtained from
http://software.sandia.gov/appspack.

The target platforms for APPSPACK are the loosely-coupled parallel systems
now widely available. To find a solution to these problems, we used version
4.0 [40].
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