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REVISITING ASYNCHRONOUS PARALLEL PATTERN SEARCH
FOR NONLINEAR OPTIMIZATION∗
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Abstract. We present a new asynchronous parallel pattern search (APPS) method which is
different from that developed previously by Hough, Kolda, and Torczon. APPS efficiently uses
parallel and distributed computing platforms to solve science and engineering design optimization
problems where derivatives are unavailable and cannot be approximated. The original APPS was
designed to be fault-tolerant as well as asynchronous and was based on a peer-to-peer design. Each
process was in charge of a single, fixed search direction. Our new version is based instead on a
manager-worker paradigm. Though less fault-tolerant, the resulting algorithm is more flexible in
its use of distributed computing resources. We further describe how to incorporate a zero-order
sufficient decrease condition and handle bound constraints. Convergence theory for all situations
(unconstrained and bound constrained as well as simple and sufficient decrease) is developed. We
close with a discussion of how the new APPS will better facilitate the future incorporation of linear
and nonlinear constraints.
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1. Introduction. Asynchronous parallel pattern search (APPS) is a variation
on parallel pattern search that uses parallel resources more efficiently by eliminating
synchronization [12]. Pattern search methods [18, 20, 21, 26] and, more generally,
generating set search (GSS) methods [14, 15] are geared toward solving science and
engineering optimization problems that lack explicit derivative information. These
problems are typically characterized by objective functions based on complex and ex-
pensive computer simulations. GSS methods are provably convergent to a stationary
point if the underlying objective function is suitably smooth; further, GSS methods
often work well in practice (with some theoretical justification; see, e.g., [1]) even on
nonsmooth problems; see, e.g., [8] and references therein.

The original APPS algorithm is described in [12], and analysis follows in [16, 17].
The motivation for an asynchronous version of parallel pattern search has not changed
from that described in [12]:

A single synchronization step at the end of every iteration. . . is nei-
ther appropriate nor effective when any of the following factors holds:
function evaluations finish in varying amounts of time (even on equiv-
alent processors), the processors employed in the computation possess
different performance characteristics, or the processors have varying
loads.
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However, another driving motivation for the original APPS was the need for a method
that was tolerant to various types of failures that might cause synchronous parallel
pattern search to completely fail or be extremely slow to converge. To facilitate fault-
tolerance, the original APPS algorithm was based on a peer-to-peer model and used
PVM [7] as the communication architecture. The new APPS is based instead on
a manager-worker paradigm, sacrificing some fault-tolerance in exchange for greater
simplicity and flexibility. Further, the new version is based on MPI [25], which many
users seem to prefer to PVM. (Is should be noted that some fault-tolerant versions of
MPI do exist [4] but such functionality is still rare.)

The sacrifices in terms of fault-tolerance are minimal since checkpointing to disk
in the manager-worker version can be used in lieu of a peer-to-peer design. The
checkpoint data is small, consisting of only the current best point and correspond-
ing function value. The primary difference between peer-to-peer and checkpointing
manager-worker implementations is that the checkpoint version requires some mech-
anism for restarting (either manual or automated) after a failure, whereas the peer-
to-peer continues without any intervention.

In the original APPS, there were multiple agents (i.e., the peers), each of which
owned part of the logic of the search. These agents had to correspond with one another
regarding algorithmic events (a better point, single direction convergence, and overall
convergence), not to mention different types of faults; see [12] for more details. With
a single manager process controlling all the logic of the search, these complexities are
eliminated. Since the number of worker processes is typically very small (1 to 100
workers) and each communicates infrequently and asynchronously with the manager,
it is unlikely that there will be any sort of communication bottleneck at the manager
process.

In our description of the new APPS, we present additional modifications for a
zero-order (i.e., does not use gradient information) sufficient decrease condition and
for bound constraints. The adaptation of a zero-order sufficient decrease condition
to pattern search has been discussed in several contexts [14, 23], including a different
take on peer-to-peer asynchronous parallel pattern search [6]. In particular, the gen-
eralization of pattern search to GSS in [14] was motivated by the desire to incorporate
generic globalization strategies, including sufficient decrease, into the framework. The
use of a sufficient decrease condition yields greater flexibility in the selection of search
directions at each iteration. Handling bound constraints for pattern search has also
been the subject of several papers [19, 22, 14]. Some problematic numerical results in
the original APPS paper [12, Table 5.6] are the result of not appropriately handling
the bound constraints.

The organization of this paper is as follows. In section 2, we review the parallel
pattern search algorithm and variants that can be used for sufficient decrease and/or
bound constraints; known convergence results are summarized in section 2.4. The
new APPS algorithm is presented in section 3, along with its own corresponding
variants. An illustrative example of the new APPS algorithm is presented in section 4.
Convergence theory follows in section 5. Numerical results comparing the synchronous
and asynchronous versions are presented in section 6. We conclude with commentary
on the algorithm and associated theory, pointers to its implementation and more
numerical results, and ideas for future work in section 7. Table 1.1 summarizes the
differences between the new and original versions of APPS. For those familiar with
the original APPS, a discussion of the evolution from that one to this one is discussed
in Appendix A.

For the purposes of this text, we consider both the unconstrained and bound-
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Table 1.1

Comparison of new and original APPS.

New APPS Original APPS

Parallel model Manager-worker Peer-to-peer

Load Balancing Each evaluation is assigned
dynamically to a worker
process.

Each evaluation is assigned to
the agent process that owns
the corresponding direction.

Communication
architecture

MPI (or PVM) PVM, or any fault-tolerant
architecture

Fault-tolerance achieved
by. . .

Checkpointing to disk Automatic run-time recovery

Provably convergent in
unconstrained case

Yes Yes [17]

. . . in bound constrained
case

Yes Possible, but has not been
published

. . . using zero-order
sufficient decrease
condition

Yes Possible, but has not been
published

Can be modified to run
in synchronous mode?

Yes, very easily Not easily

Can the directions
change?

Yes, at successful iterations.
Also possible at unsuccessful
iterations, but more difficult
to implement.

Possible at successful
iterations, but very difficult
to implement.

constrained nonlinear optimizations problems. The unconstrained problem is given
by

min
x∈Rn

f(x).(1.1)

Here f : Rn → R and x ∈ Rn. The bound constrained problem is given by

min f(x)
subject to � ≤ x ≤ u.

(1.2)

The function f is the same as for the unconstrained problem. The upper and/or lower
bounds are optional on an element-by-element basis; specifically, � is an n-vector with
entries in R∪{−∞} and u is an n-vector with entries in R∪{+∞}. The set Ω denotes
the feasible region; i.e.,

Ω = {x ∈ Rn : � ≤ x ≤ u}.

The unconstrained problem can be thought of as a special case of the bound con-
strained problem; in other words, Ω = Rn in the unconstrained problem.

2. Review of parallel pattern search. We briefly review parallel pattern
search (PPS) with simple decrease and its extensions for sufficient decrease and bound
constraints. We refer throughout to pattern search, although it might be more ac-
curate to refer to GSS; recall that the generalization of pattern search to GSS was
motivated by the desire to bring in different globalization strategies, including suf-
ficient decrease [14]. We conclude by presenting unified convergence results. This
review lays the groundwork for the description of the asynchronous methods.
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Initialization.

Let Δtol > 0 be the step length convergence tolerance.

Set x0 ∈ Ω to be some feasible initial guess.

Set D0 =
{
d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Set Δ0 > Δtol to be the initial value of the step length.

Iteration. For k = 0, 1, . . .

Step 1. Generate a set of trial points corresponding to the search
directions; i.e.,

Xk =
{
xk + Δ̃

(i)
k d

(i)
k : 1 ≤ i ≤ pk and Δ̃

(i)
k ≥ Δtol

}
.

Send all points in Xk to the evaluation queue.

Step 2. Wait until all trial points in the evaluation queue have been
evaluated. Collect those points in the set Yk.

Step 3. If there exists a trial point in yk ∈ Yk such that
f(yk) < f(xk) − ρ(Δk), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful:

– Set xk+1 = yk.

– Choose a new Dk+1 =
{
d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Set Δk+1 = Δk.

– Go to Step 1.

Step 5. The iteration is unsuccessful:

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Set Δk+1 = 1
2Δk

– If Δk+1 < Δtol, terminate; else, goto Step 1.

Fig. 2.1. PPS algorithm (with synchronization).

The generic algorithm is presented in Figure 2.1, and the notation used is as
follows. Subscripts denote the iteration index. The vector xk ∈ Rn denotes the best
point (i.e., the point with the smallest known function value) at the beginning of
iteration k. The set

Dk =
{
d
(1)
k , . . . , d

(pk)
k

}
denotes the set of search directions at iteration k, and the number of search directions
in Dk is denoted by pk. Superscripts denote the direction index, which ranges between
1 and pk at iteration k. The value Δk denotes the step length at iteration k, and the

values Δ̃
(i)
k ∈ [0,Δk], for i = 1, . . . , pk, denote the corresponding pseudo step lengths.

The function ρ(·) denotes the forcing function.
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In Step 1 of Figure 2.1, a set of trial points is generated, denoted by Xk. The
method for choosing the pseudo step lengths is discussed in detail in the subsections

that follow. In general, Δ̃
(i)
k = Δk unless bound constraints are involved.

In Step 2 of Figure 2.1, the trial points are evaluated, and the results are collected
in Yk. For PPS, Yk = Xk for all k; however, this will not be the case for the
asynchronous version in section 3. Step 2 is where parallelism may be employed, in
which case the pk function evaluations are executed in parallel. The algorithm does
not go on to the next step until all evaluations have completed, so this is the point of
synchronization. Furthermore, this is typically the most computationally expensive
step because pk function evaluations must be computed.

In Step 3 of Figure 2.1, the decrease condition is evaluated. The choice of the func-
tion ρ(·) is discussed in detail in section 2.1 and section 2.2. If the decrease condition
is satisfied, then the iteration is termed successful ; otherwise, it is unsuccessful.

As an aside, we make the following remark. If multiple points in Yk produce
decrease, any one can be chosen as yk without impacting the convergence theory in
section 2.4. However, from a practical perspective, a point that yields the smallest
function value should be selected.

The algorithm executes Step 4 of Figure 2.1 if the iteration is successful. The next
iterate xk+1 is updated to be the trial point that produced decrease in the function, yk.
A new set of search directions may also be selected at this point. The search directions
must be chosen in a particular way to guarantee that the algorithm will converge. The
criteria are detailed in the subsections that follow. For simplicity, a choice that always
works is the set of plus and minus unit vectors, i.e., Dk = {±e1,±e2, . . . ,±en} and
pk = 2n for k = 1, 2, . . ..

The algorithm executes Step 5 of Figure 2.1 if the iteration is unsuccessful. In this
case, the step length Δk is reduced by a factor of two. In practice, termination occurs
when the step length is less then Δtol > 0. However, for the purposes of studying the
asymptotic behavior of the algorithm, Δtol = 0.

2.1. PPS with simple decrease. Let us consider PPS with simple decrease
for the unconstrained optimization problem (1.1). The term simple decrease means
that only f(yk) < f(xk) is required in Step 3. In other words, the function ρ(·) is
assumed to be identically zero.

Below, we describe the four conditions that specialize the algorithm in Figure 2.1
to be PPS with simple decrease (in the unconstrained case).

The first two conditions have to do with the selection of the search directions,
Dk. It is useful to decompose the set of search directions as Dk = Gk ∪ Hk. The
subset Gk is the core set of search directions (the poll set), while the subset Hk is a
possibly empty set of additional search directions (the search set) [3, 14]. The two
subsets play different roles in the analysis and are constructed according to different
rules. The subset Gk is key to the convergence analysis and must satisfy very specific
properties as outlined below. On the other hand, the subset Hk is subject to only
those requirements that ensures it does not interfere with convergence. This means
the subset Hk can be populated with directions that might accelerate the search by,
for example, allowing very long steps.

Condition 1 requires that the cosine measure of the subset Gk be uniformly
bounded; see [14] for a discussion of cosine measure.
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Condition 1. Every Gk positively spans Rn. Furthermore, there exists a
constant cmin > 0, both independent of k, such that κ(Gk) ≥ cmin for all k,
where

κ(Gk) ≡ min
v∈Rn

max
d∈Gk

vT d

‖ v ‖ ‖ d ‖ .

Condition 2 requires that the search directions in Gk be uniformly bounded in
length.

Condition 2. There exist βmin > 0 and βmax > 0, independent of k, such
that for all k the following holds:

βmin ≤ ‖ d ‖ ≤ βmax for all d ∈ Gk.

Parts (a)–(c) of Condition 3 set more specific conditions for selecting the search
directions; these conditions are important in the simple decrease case. Essentially, all
search directions must be derived from a fixed, finite set G. Part (c) explains how the
optional set Hk must be formed. Condition 3 also requires that the forcing function is
identically zero in part (d) and that the pseudo step lengths are chosen appropriately
in part (e).

Condition 3 (rational lattice).
(a) There exists a finite set G = {d(1), . . . , d(p)} such that every vector

d(i) ∈ G is of the form d(i) = Bc(i), where B ∈ Rn×n is a nonsingular
matrix and c(i) ∈ Qn.

(b) All search directions in Gk are chosen from G; i.e., Gk ⊆ G for all k.
(c) All search directions in Hk are nonnegative integer combinations of the

elements of G;. i.e., Hk ⊂
{∑p

i=0 ξ
(i)d(i) | ξ(i) ∈ {0, 1, 2, . . .}

}
for all k.

(d) The forcing function is identically zero, i.e., ρ(t) ≡ 0.

(e) All pseudo step lengths satisfy Δ̃
(i)
k ∈ {0,Δk}.

Conditions 1–3 are not difficult to satisfy; consider, for example,

Dk = {±e1,±e2, . . . ,±en} for all k.

Since we are only considering the unconstrained problem in this subsection, we
further assume that the pseudo step lengths are always equal to the step length, i.e.,

Δ̃
(i)
k = Δk for i = 1, . . . , pk, k = 1, 2, . . . .

This is Condition 6, formalized in the discussion of bound constraints.

2.2. PPS with sufficient decrease. Let us consider PPS with sufficient de-
crease for the unconstrained optimization problem (1.1). In this case, ρ(·) is a nonzero
function, in contrast to the simple decrease case.

There are four conditions that specialize the algorithm in Figure 2.1 to be PPS
with sufficient decrease (in the unconstrained case). As before, Conditions 1, 2, and
6 are imposed. Condition 3 is replaced instead by the following.
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Condition 4 (forcing function).
(a) The function ρ(Δ) is a nonnegative continuous function on Δ ∈ [0,+∞).
(b) The function ρ(Δ)/Δ monotonically decreases to zero as Δ ↓ 0.

A common choice that satisfies Condition 4 is

ρ(Δ) = αΔ2,

where α is some fixed, positive constant. For a complete discussion of forcing functions
for GSS, see [14] and references therein.

2.3. PPS with bound constraints. Let us consider PPS for the bound con-
strained optimization problem (1.2). Adapting PPS for bound constraints affects the
choice of search directions and the choice of the pseudo step lengths. The adaptation
is largely independent of the choice of simple or sufficient decrease, except for the
particulars of choosing the pseudo step lengths.

Three conditions specialize the algorithm in Figure 2.1 to be PPS with bound
constraints.

In the bound constrained case, the search directions must conform to the ge-
ometry of the nearby boundary, so Condition 5 requires that Gk be the coordinate
search directions [19]. Condition 5 replaces Condition 1 and Condition 2 since these
conditions are trivially satisfied by this choice of Gk. Condition 5 is more restrictive
than absolutely necessary and more general selection criteria may be employed; e.g.,
see the requirements on choosing search directions for general linear constraints in
[14, 15].

Condition 5. For all k, we have Gk = {±e1, . . . ,±en}.

The second condition is either Condition 3 or Condition 4, depending on the
choice of simple or sufficient decrease.

The final condition is the one we have already referred to, having to do with the
choice for pseudo step lengths. Special choices for these values are required in the

case of bound constraints. There are several ways that Δ̃
(i)
k can be chosen so long as

Condition 6, which states that the full step is used if possible, is satisfied.

Condition 6. If xk + Δkd
(i)
k ∈ Ω, then Δ̃

(i)
k = Δk.

Three possible strategies for choosing admissible values for Δ̃
(i)
k are described in [15]

for the case of general linear constraints; we present two here. The simplest choice is
the following:

Δ̃
(i)
k =

{
Δk if xk + Δkd

(i)
k ∈ Ω,

0 otherwise.
(2.1)

A more sophisticated choice may be employed in the sufficient decrease case:

taking the longest possible feasible step. Define Δ̃
(i)
k as the solution to

max Δ̃

subject to 0 ≤ Δ̃ ≤ Δk,

xk + Δ̃ d
(i)
k ∈ Ω.

(2.2)
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Note that only elementary algebra is required to solve (3.2)

2.4. PPS convergence theory. Before discussing convergence theory, we present
some useful definitions and assumptions.

In any practical situation, Δtol > 0. However, for the purposes of studying the
asymptotic behavior of the algorithm, Δtol = 0.

The following assumptions on the function are employed later theorems.

Assumption 1. The set Lf (x0) = {x ∈ Ω : f(x) ≤ f(x0)} is bounded.

Assumption 2. The function f is bounded below on Ω.

Assumption 3. The function f is continuously differentiable on Lf (x0).

Assumption 4. The gradient ∇f is Lipschitz continuous with constant M on
Lf (x0).

Assumption 4 is stronger than necessary and can be replaced by assuming only
continuous differentiability. (See the note at the end of section 3.6 in [14].) In that
case, we let M = ω(x, r), where ω denotes the modulus of continuity, i.e.,

ω(x, r) = max{‖∇f(y) −∇f(x)‖ | ‖y − x‖ ≤ r}.

In constrained optimization, we can measure progress to a KKT point using the
following analogue of ‖∇f(x) ‖. For x ∈ Ω, define

χ(x) = max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.

The function χ is particularly suitable for the analysis of pattern search (and GSS)
methods [14, 15]. It has the following three properties [2]: χ(x) is continuous, χ(x) ≥
0, and χ(x) = 0 if and only if x is a KKT point. Note that χ(x) ≡ ‖∇f(x) ‖ if
Ω = Rn.

Now that the assumptions and notation have been established, we can present
the convergence results for PPS.

Theorem 2.1 (see [14] and references therein). Consider the optimization prob-
lem (1.1), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions 1, 2, either 3 or 4, and 6. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 2.2 (see [14, 15] and references therein). Consider the optimization
problem (1.2), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions either 3 or 4, 5, and 6. Then

lim inf
k→+∞

χ(xk) = 0.

The next sections describe an asynchronous version of parallel pattern search and
its convergence theory.
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3. APPS. The premise of APPS is that greater efficiency in parallel processor
utilization will enable faster solution in comparison with synchronous pattern search.
The original peer-to-peer version has indeed demonstrated faster execution times [12].
The new version is based on a manager-worker design, and that it also demonstrates
faster execution times in section 6. A comparison between the manager-worker and
peer-to-peer approaches is presented in Table 1.1 and Appendix A.

As mentioned in section 2, the synchronization point in pattern search occurs
in Step 2 of Figure 2.1, where the algorithm is required to wait until the evaluation
of every trial point is complete before continuing. The difference between the syn-
chronous and asynchronous versions is that the asynchronous version need not wait
until all function evaluations complete before moving on to the decision step (Step 3).
Instead, the points with incomplete function evaluations are stored in a queue, and
the algorithm moves ahead based on the best information available to it.

The flexibility of APPS necessitates a small amount of additional bookkeeping,
as observed in [12]. Each trial point must “remember” how it was generated. More
specifically, let y be a trial point generated at Step 1 in iteration k using direction i;
then the following information is also stored:

• Parent(y) = its parent, xk,
• ParentFx(y) = its parent’s function value, f(xk),
• Dir(y) = its direction index, i, and

• Step(y) = its step length, Δ
(i)
k (defined below).

It is not necessary that the actual parent be stored; instead, a unique identifier is
sufficient. In terms of implementation, the additional storage is for this bookkeeping
negligible.

The manager-worker APPS algorithm, presented in in Figure 3.1, has the same
structure as PPS in Figure 2.1. We discuss the major differences.

The notation is the same as for PPS, with the following exceptions and additions.
There is no longer a single step length Δk at step k; instead, there is a step length

associated with each direction, denoted by Δ
(i)
k . As before, we assume that Δ̃

(i)
k = Δ

(i)
k

in the unconstrained case. We introduce a minimum step length, Δmin, defined by
the integer Γmin. There is an evaluation queue which may not be completely emptied
in each iteration. Correspondingly, we introduce the set Ak containing the indices of
the search directions that, at the start of iteration k, are “active”; in other words,
those directions that have an associated trial point in the evaluation queue. Further,
we define qmax to be the maximum number of points the queue holds.

In Step 1 of Figure 3.1, the trial points are generated. The selection criteria for
generating new trial points have changed slightly and now take into account whether
a given search direction is active. The set Ak+1 is set during this step, and it may be
reset or modified in Step 4 or Step 5.

In Step 2 of Figure 3.1, a set of evaluated trial points, denoted Yk, is collected. In
contrast to Step 2 of Figure 2.1, this step does not wait until all trial points have been
evaluated before moving on. Thus, it may be the case that Yk �= Xk and further that
Yk �⊆ Xk. Note that if it is always the case that Yk = Xk, then the APPS algorithm
in Figure 3.1 is equivalent to the PPS algorithm in Figure 2.1 with the exception of
how Δk+1 is reset in Step 4, which is inconsequential in practice as discussed below.

Step 3 of Figure 3.1 now selects a subset of the trial points to consider for a simple
decrease comparison with respect to the current best point. The subset includes those
points that satisfy a sufficient decrease condition with respect to their corresponding
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Initialization.

Set x0 ∈ Ω be some feasible initial guess.

Set D0 =
{
d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Let Δtol > 0 be the step length convergence tolerance.

Set Δ
(i)
0 = Δ0 > Δtol for i = 1, . . . , p0 to be the initial step lengths.

Let Γmin ∈ Z with Γmin ≥ 0. Set Δmin = 2−ΓminΔ0.
Set A0 = ∅. Let qmax be the evaluation queue size.

Iteration. For k = 0, 1, . . .

Step 1. Generate a (possibly empty) set of trial points

Xk =
{
xk + Δ̃

(i)
k d

(i)
k : 1 ≤ i ≤ pk, i �∈ Ak, and Δ̃

(i)
k > Δtol

}
.

Then, send the set of points Xk to the evaluation queue.

Set Ak+1 = {i : Δ̃
(i)
k > Δtol}.

Step 2. Collect a nonempty set Yk of evaluated trial points.

Step 3. Let Ȳk ⊆ Yk be the subset of trial points that satisfy the sufficient
decrease condition (see Figure 3.2). If there exists a trial point
yk ∈ Ȳk such that f(yk) < f(xk), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful.

– Set xk+1 = yk.

– Choose a new Dk+1 =
{
d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Let Δ̂ = Step(yk), i.e., the step length that produced yk.

– Set Δ
(i)
k+1 = max{Δ̂,Δmin} for i = 1, . . . , pk+1.

– Reset Ak+1 = ∅.
– Prune the evaluation queue to (qmax − pk+1) or fewer entries.

– Go to Step 1.

Step 5. The iteration is unsuccessful.

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Let Ik = {Dir(y) : y ∈ Yk and Parent(y) = xk}, i.e., the
directions that generated the points that have xk as their parent.

– Update Ak+1 ← Ak+1 \ Ik where Ak+1 is defined in Step 1.

– Set Δ
(i)
k+1 =

{
1
2Δ

(i)
k , if i ∈ Ik

Δ
(i)
k , if i �∈ Ik

for i = 1, . . . , pk+1.

– If Δ
(i)
k+1 < Δtol for i = 1, . . . , pk+1, terminate. Else, goto Step 1.

Fig. 3.1. Manager-worker APPS algorithm.
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For each y ∈ Yk

– Let f(ŷ) = ParentFx(y), i.e., the function value of the parent of y.

– Let Δ̂ = Step(y), i.e., the step length that produced y.

– Define the set Ȳk =
{
y ∈ Yk : f(y) < f(ŷ) − ρ(Δ̂)

}
.

Fig. 3.2. Sufficient decrease condition for Step 3 in APPS (Figure 3.1).

parent function values. The specific criteria are presented in Figure 3.2 and discussed
in more detail in section 3.1 and section 3.2.

In the case of a successful iteration (Step 4), the primary difference between APPS
(Figure 3.1) and PPS (Figure 2.1) is the step length update. In both cases, the step
length is updated to be the same as the step length that produced yk. In PPS, this
is simply Δk. However, in APPS, the step used to produce yk is stored as Step(yk),
part of the extra bookkeeping described above. All pk+1 step lengths are reset to the
larger of either Step(yk) or the quantity Δmin. If Δmin ≤ Δtol, this has no affect in
practice, but it is important in the convergence theory (where it cannot be less than
Δtol since Δtol = 0). A successful iteration clears the active directions, so Ak+1 is
reset to the empty set. At this point, the evaluation queue needs to be pruned to
prevent it from growing too large; such a measure has analytical (see Condition 9) as
well as practical benefits. Any or all points may be pruned.

In the case of an unsuccessful iteration (Step 5 in Figure 3.1), the step lengths are
reduced individually depending on the trial points in Yk. Specifically, each evaluated
trial point is considered, and if the trial point’s parent is not xk, then it is discarded.
(Recall that keeping track of the parent is part of the bookkeeping described above.)
Otherwise, the corresponding step is reduced by a factor of two. The correct step is
identified by the direction index that was used to generate the trial point (also part
of the bookkeeping). Termination is essentially the same, except that there are now
pk+1 steps, all of which must be less than the specified tolerance before the algorithm
terminates.

3.1. APPS with simple decrease. In the simple decrease version of APPS,
Conditions 1–3 are imposed as in the synchronous version discussed in section 2.1.
Condition 6 is replaced with Condition 7 (see section 3.3); the new condition handles
the multiple, possibly different step lengths.

In the simple decrease case, we can assume, without loss of generality, that Ȳk =
Yk in Step 3. The reasoning is that it cannot be the case that a trial point y satisfies
f(y) < f(xk) but not f(y) < f(ŷ) (where ŷ is the parent of y). Since ŷ is a previous
best point, it must be true that f(xk) ≤ f(ŷ).

3.2. APPS with sufficient decrease. In the sufficient decrease version of
APPS, Conditions 1, 2, 4, and 7 (the replacement for Condition 6) are enforced.

Implementing sufficient decrease in an asynchronous environment adds a layer
of difficulty because the sufficiency condition is with respect to the parent of the
trial point. There is no assurance that xk is the parent of the trial point, as in the
synchronous case. Consequently, in the asynchronous case, determining whether or
not an evaluated trial point is a new best point becomes a two-step process. First,
the point is checked to see if it satisfies a sufficient decrease condition with respect
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to its parent’s function value (see Figure 3.2). Second, it is assessed to see if simple
decrease with respect to the current xk is satisfied.

For example, consider an evaluated trial point y at iteration k. Let f(ŷ) =
ParentFx(y) be the parent function value, and let Δ̂ = Step(y) be the step length
that produced y. To be a candidate for new best point, y must satisfy

f(y) < min{f(ŷ) − ρ(Δ̂), f(xk)}.

3.3. APPS with bound constraints. Bound constraints are handled essen-
tially the same as before. Now, however, Condition 6 must be modified to reflect the
pk independent step lengths. Condition 7 results.

Condition 7. If xk + Δ
(i)
k d

(i)
k ∈ Ω, then Δ̃

(i)
k = Δ

(i)
k .

Similarly, the step calculations in (2.1) and (2.2) need to be modified. The fol-
lowing choice is suitable for either simple or sufficient decrease [15]:

Δ̃
(i)
k =

{
Δ

(i)
k if xk + Δ

(i)
k d

(i)
k ∈ Ω,

0 otherwise.
(3.1)

In the sufficient decrease case, taking the longest possible feasible step is an alternative

[15]. Define Δ̃
(i)
k as the solution to

max Δ̃

subject to 0 ≤ Δ̃ ≤ Δ
(i)
k ,

xk + Δ̃ d
(i)
k ∈ Ω.

(3.2)

4. An illustrated example of APPS. A two-dimensional example is presented
in Figures 4.1 and 4.2. The contour plot of the objective function uses darker shading
to indicate lower function values. Each figure represents the state of the algorithm
at an iteration. The square denotes the best point (i.e., xk) at that iteration, and
the circles denote points in the evaluation queue after Step 1 is completed. The lines
denote the search directions. For simplicity, we use the same set of search directions
throughout: Dk = {e1, e2,−e1,−e2}. The points are labeled with letters, and the
algorithm is initialized with the starting point x0 = a and an initial step length of
Δ0 = 1.

Before we continue, it is important to note the following. At each iteration, the
set of evaluated trial points returned in Step 2 could be any nonempty subset of points
in the evaluation queue—the choice of this subset is not controlled by the APPS algo-
rithm. Thus, the set Yk at each iteration can be interpreted as the result of random
chance. (In truth, we have crafted the selection in this example to demonstrate cer-
tain features of the algorithm.) The algorithm makes no assumption that the points
in the evaluation queue finish being evaluated in any particular order.

A couple of algorithmic choices also influence our example. In Step 2, we assume
that no sufficient decrease criteria is employed (i.e., ρ ≡ 0) so that Ȳk ≡ Yk for all
k. In Step 4, we assume that qmax = 6.

Iteration 0 illustrates an unsuccessful iteration. We assume that only two eval-
uations (b and e) are returned in Step 2. Neither b nor e improves the function
value, so the iteration is unsuccessful. The parent of both b and e is x0 = a and
their corresponding direction indices are 0 and 3, thus I0 = {0, 3} in Step 5. The
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a b

c

d

e

Iteration 0
x0 = a
Δ

(0)
0 = Δ

(1)
0 = Δ

(2)
0 = Δ

(3)
0 = 1

A0 = ∅
X0 = {b, c,d, e} Queue = {b, c,d, e}
Y0 = {b, e} Queue = {c,d}
Unsuccessful (I0 = {0, 3})

a

c

d f

g

Iteration 1
x1 = a
Δ

(0)
1 = Δ

(3)
1 = 1

2 ,Δ
(1)
1 = Δ

(2)
1 = 1

A1 = {1, 2}
X1 = {f, g} Queue = {c,d, f, g}
Y1 = {f, g} Queue = {c,d}
Successful (f) Pruned Queue = {c,d}

c

d f h

i

j

k

Iteration 2
x2 = f
Δ

(0)
2 = Δ

(1)
2 = Δ

(2)
2 = Δ

(3)
2 = 1

2
A2 = ∅
X2 = {h, i, j, k} Queue = {c,d,h, i, j, k}
Y2 = {c, j,h} Queue = {d, i, k}
Successful (c) Pruned Queue = {i, k}

Fig. 4.1. Example APPS iterations: part 1.

step lengths corresponding to those directions are reduced by a factor of 2. Note that
points c and d remain in the evaluation queue.

Iteration 1 illustrates a successful iteration. In Step 1, this iteration generates
only two new trial points (f and g) because Directions 1 and 2 are already active (i.e.,
A1 = {1, 2}). In Step 2, we assume points f and g are returned. Since f reduces the
function value, this iteration is successful. All step lengths for the next iteration are
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i

k

c l

m

n

o

Iteration 3
x3 = c
Δ

(0)
3 = Δ

(1)
3 = Δ

(2)
3 = Δ

(3)
3 = 1

A3 = ∅
X3 = {l,m,n, o} Queue = {i, k, l,m,n, o}
Y3 = {i, l,m, o} Queue = {k,n}
Successful (l) Pruned Queue = {k,n}

k

n l p

q

r

s

Iteration 4
x4 = l
Δ

(0)
4 = Δ

(1)
4 = Δ

(2)
4 = Δ

(3)
4 = 1

A4 = ∅
X4 = {p, q, r, s} Queue = {k,n,p, q, r, s}
Y4 = {k,n} Queue = {p, q, r, s}
Unsuccessful (I4 = ∅)

l p

q

r

s

Iteration 5
x5 = l
Δ

(0)
5 = Δ

(1)
5 = Δ

(2)
5 = Δ

(3)
5 = 1

A5 = {0, 1, 2, 3}
X5 = ∅ Queue = {p, q, r, s}
. . .

Fig. 4.2. Example APPS iterations: part 2.

reset to the length of the step length that produced f (i.e., Δ̂ = 1
2 ). No pruning of

the queue is necessary.

Iteration 2 illustrates “disconnected” points in the evaluation queue and a suc-
cessful iteration that results from one of these disconnected points. Two points remain
in the evaluation queue, and four new trial points are generated and added in Step 1.
Because x2 �= x1, the older points in the queue are no longer connected to the current
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best point and so are referred to as disconnected. In Step 2, we assume the evaluation
for the point c is finally returned (along with j and h) and results in another successful
step. All step lengths for the next iteration are set to the step length that produced
c (i.e., Δ̂ = 1), and this step is from Iteration 0. This time, the evaluation queue is
pruned by removing the oldest point, d.

Iteration 3 illustrates two points with improved function values returning simul-
taneously (i and l). As with synchronous parallel pattern search, we will assume that
we take the best one, although this is not strictly necessary in terms of the theory.

Iteration 4 illustrates an unsuccessful iteration that results in no changes and
thus no new trial points in the next iteration. Here, points k and n finish their
evaluations and the result is an unsuccessful iteration. However, since both points are
disconnected (i.e., neither has l as its parent), no step lengths are reduced in Step 5.

At the beginning of Iteration 5, no new trial points are generated, and four points
remain in the evaluation queue. The process continues from there, marching toward
a local minimizer.

5. APPS convergence theory. We develop convergence theory for APPS, con-
cluding with results analogous to Theorems 2.1 and 2.2. The analysis borrows heavily
from [14, 15, 17]. We begin in section 5.1 by determining bounds on ‖∇f(xk) ‖ and
χ(xk) in terms of the step lengths. Next, in section 5.2, we present some results
showing that a subsequence of the step lengths go to zero. Finally, in section 5.3, we
give the convergence results.

It is implicitly assumed in the discussion of the asymptotic behavior that Δtol = 0
in Figure 3.1.

We make explicit the bound on the number pk of search directions in Dk in
Condition 8. This is an implicit assumption in PPS.

Condition 8. There exists pmax, independent of k, such that for all k,
pk ≤ pmax.

We also need to ensure that a trial point cannot languish in the evaluation queue
indefinitely. This is also an implicit assumption in PPS.

Condition 9. If a trial point is submitted to the evaluation queue at iteration
k, either its evaluation will have completed or it will have been pruned from
the evaluation queue by iteration k + η.

Condition 9 is not saying that every function evaluation requires η iterations;
instead, this is an upper bound on the number of iterations. In fact, the value of η may
be quite large. A sticky point here is that an iteration does not necessarily correspond
to a unit of time, so it is difficult to specify a maximum number of iterations for a
function evaluation. However, if we assume that a unit of time is associated with an
iteration, this assumption can be enforced as follows. Without loss of generality, let
the minimum iteration time correspond to 1 time unit. Now, suppose that there are w
workers available for computing function evaluations and that the maximum number
of time units required to compute a single function evaluation on a single worker is
φ. Next, assume that trial points submitted to the evaluation queue are sent to the
workers in order (although there is no assumption that the function evaluations finish
in order). Finally, assume the maximum queue size is qmax ≥ pmax and is always
pruned to a size no greater than (qmax − pk+1) for any successful iteration. Then, η
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can explicitly be computed as

η = φ
⌈qmax

w

⌉
.

From an implementation point of view, the critical requirement is that the evaluation
queue cannot be allowed to grow too large, and so the pruning in Step 4 is necessary
for enforcing Condition 9.

5.1. Bounding the measure of stationarity. Theorem 5.1, below, applies to
the unconstrained case and bounds the norm of the gradient as a function of the step
length. This result and its proof are nearly identical to Theorem 3.3 in [14]. The
difference is identifying those iterations for which such a bound can be shown. The
necessary condition is that there must have been at least one contraction in every
direction since the last successful iteration.

Theorem 5.1. Consider the optimization problem (1.1), satisfying Assump-
tions 3–Lipschitz. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2,
either 3 or 4, and 7. For every k such that

Δ̂k ≡ max
1≤i≤pk

{
2Δ

(i)
k

}
≤ Δmin,(5.1)

we have

‖∇f(xk) ‖ ≤ 1

cmin

[
MΔ̂kβmax +

ρ(Δ̂k)

Δ̂kβmin

]
.(5.2)

Proof. By hypothesis (5.1), Δ
(i)
k < Δmin for all i = 1, . . . , pk. This implies that

there has been at least one contraction along each direction since that last successful
iteration, so

0 ≤ f(xk + 2Δ
(i)
k d

(i)
k ) − f(xk) + ρ(2Δ

(i)
k ) for i = 1, . . . , pk.(5.3)

The value of 2Δ
(i)
k comes in because the current value of Δ

(i)
k is half of that for which

the contraction was done. Also note that it is assumed Δ̃
(i)
k = Δ

(i)
k by Condition 7.

Since, by hypothesis, Condition 1 is satisfied, there exists an ı̄ ∈ {1, . . . , pk} such
that

cmin ‖∇f(xk) ‖ ‖ d(ı̄)
k ‖ ≤ −∇f(xk)

T d
(ı̄)
k .(5.4)

Employing Assumption 3, the mean value theorem can be applied to (5.3) for
i = ı̄ to conclude that there exists ᾱ ∈ [0, 1] such that

f(xk + 2Δ
(ı̄)
k d

(ı̄)
k ) − f(xk) = 2Δ

(ı̄)
k ∇f(xk + ᾱ2Δ

(ı̄)
k d

(ı̄)
k )T d

(ı̄)
k .(5.5)

Combining (5.3) and (5.5), dividing through by 2Δ
(ı̄)
k , and subtracting ∇f(xk)

T d
(ı̄)
k

from both sides yields

−∇f(xk)
T d

(ı̄)
k ≤

(
∇f(xk + ᾱ 2Δ

(ı̄)
k d

(ı̄)
k ) −∇f(xk)

)T

d
(ı̄)
k +

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

≤ ‖∇f(xk + ᾱ 2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ ‖ d(ı̄)

k ‖ +
ρ(2Δ

(ı̄)
k )

2Δ
(ı̄)
k

.
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Using (5.4) to replace the left-hand side and dividing through by ‖ d(ı̄)
k ‖, we now

have

cmin ‖∇f(xk) ‖ ≤ ‖∇f(xk + ᾱ2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ +

1

‖ d(ı̄)
k ‖

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

.(5.6)

Since ∇f is Lipschitz (Assumption 4), the norm of any search direction is bounded
(Condition 2), and ᾱ ∈ [0, 1], it follows that

‖∇f(xk + ᾱ2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ ≤ M

(
ᾱ 2Δ

(ı̄)
k ‖ d(ı̄)

k ‖
)
≤ MΔ̂kβmax.(5.7)

Now, either ρ is identically zero (Condition 3) or ρ(t)/t is monotonically decreasing
as t ↓ 0 (Condition 4). In either case,

1

‖ d(ı̄)
k ‖

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

≤ 1

βmin

ρ(Δ̂k)

Δ̂k

.(5.8)

Note that the lower bound in Condition 2 is also employed in the above inequality.
Finally, combining (5.6), (5.7), and (5.8) and dividing by cmin yields (5.2). Hence,

the claim.
A similar result can be proved in the constrained case that is nearly identical to

Theorem 4.4 in [15]. The same adaptations are used as in the unconstrained case, so
the proof is left to the reader.

Theorem 5.2. Consider the optimization problem (1.2), satisfying Assumptions
1, 3, and 4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4,
5, and 7. Let ε� > 0 be given. Then there exists a constant c such that, for every k
that satisfies

Δ̂k ≡ max
1≤i≤pk

{
2Δ

(i)
k

}
≤ max

{
Δmin,

ε�
βmax

}
,(5.9)

we have

χ(xk) ≤ c

[
MΔ̂kβmax +

ρ(Δ̂k)

Δ̂kβmin

]
.(5.10)

5.2. Globalization. Before we proceed to the globalization results, it is neces-
sary to introduce some additional notation and assumptions.

We define Γ
(i)
k for all k and i = 1, . . . , pk as

Γ
(i)
k = log2

(
Δ0

Δ
(i)
k

)
.(5.11)

We can conclude that Γ
(i)
k ∈ Z because any Δ

(i)
k is an integral power of 2 times the

initial step size, i.e.,

Δ
(i)
k+1 = 2−Γ

(i)

k Δ0.

The following Lemma 5.3 applies to APPS with a sufficient decrease condition.
Because xk is not necessarily the parent of xk+1, the proof is somewhat different than
its synchronous analogue, Theorem 3.4 in [14].
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Additional notation is required for the proof. For any successful iteration k, a
set of ancestors may be constructed for the point xk+1. Let Πk denote the iteration
indices of the ancestors of xk+1 as well as (k+ 1) itself, and let �k denote the number
of ancestors. (The size of Πk will be �k +1). To illustrate, consider again the example
of section 4. Iterations 1, 2, and 3 are successful and yield the following ancestor sets:

Π1 = {0, 2}, �1 = 1,
Π2 = {0, 3}, �2 = 1,
Π3 = {0, 1, 4} �3 = 2.

It is important to note that 0 is necessarily in every set Πk since x0 is an ancestor to
every point.

Lemma 5.3. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumption 2. Let the APPS algorithm in Figure 3.1 satisfy Conditions 4, 8, and 9.
Then there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ
(j)
k = +∞.

Proof. Suppose the lemma is false. Then there exists Γ� such that Γ
(i)
k < Γ� for

all k and i = 1, . . . , pk. Consequently, the step lengths are bounded below:

Δ
(i)
k ≥ Δ� = 2−Γ�Δ0 for all k and i = 1, . . . , pk.(5.12)

Then, by Condition 4, the forcing term is bounded below as well:

ρ(Δ
(i)
k ) ≥ ρ� = ρ(Δ�) for all k and i = 1, . . . , pk.(5.13)

Suppose k is a successful iteration, and let Πk = {i1, i2, . . . , i�k+1}. Since each
child-parent pair satisfies the sufficient decrease condition, we can apply a telescoping
sum argument and (5.13) to obtain

f(xk+1) − f(x0) =

�k∑
j=1

{
f
(
xij+1

)
− f

(
xij

)}
≥ �k ρ�.(5.14)

Another consequence of the lower bound on the step lengths in (5.12) is that each
parent can only have a finite number of children. Specifically, a parent can have no
more than c = pmax (Γ� + 1) children where the bound pmax comes from Condition 8.
Thus, if iteration k is successful, xk+1 must have at least �k/c� ancestors. Combining
this information with (5.14) yields

f(xk+1) ≥ k
(ρ�
c

)
+ f(x0).

Let S denote the subsequence of successful iterates. By Condition 9, the maximum
number of iterations to evaluate a single trial point is bounded. This coupled with
the method by which step lengths are updated implies that there must be infinitely
many successful steps, i.e., S is infinite. Thus,

lim
k∈S

f(xk+1) ≥ lim
k∈S

k
(ρ�
c

)
+ f(x0) = +∞.

This contradicts Assumption 2. Hence, the claim.
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Before we can establish a result analogous to Lemma 5.3 for the simple decrease
case, we first state a result regarding the structure of the iterates. It is a standard
result, so no proof is provided here; see instead, e.g., [14].

Proposition 5.4 (see [17]). Consider the optimization problem (1.1) or (1.2).
Consider the APPS algorithm in Figure 3.1 satisfying Condition 3. Let Γ > 0 be a
constant. Then, for any k with

Γ ≤ Γ
(i)
j for all j ≤ k, i = 1, . . . , pj ,

the following holds:

xk+1 = x0 + 2−Γ Δ0

p∑
i=1

ζk(i,Γ) d(i),(5.15)

where ζk(i,Γ) ∈ Z for each i = 1, . . . , p and k = 0, 1, 2, . . ..
Given this result, the fact that the ζk(i,Γ) are integral, and the set G is as

described in Condition 3, all iterates lie on on the lattice

M(x0,Δ0,G,Γ) =

{
x0 + 2−ΓΔ0

p∑
i=1

ζ(i)d(i) : i ∈ Z

}
.

We can now present our result.
Lemma 5.5. Consider the optimization problem (1.1) or (1.2), satisfying As-

sumption 1. Let the APPS algorithm in Figure 3.1 satisfy Conditions 3 and 9. Then,
there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ
(j)
k = +∞.

Proof. Suppose not. Then there exists Γ� such that Γ
(i)
k < Γ� for all k and i =

1, . . . , pk. By Proposition 5.4, every iterate must lie on the lattice M(x0,Δ0,G,Λ�).
On the other hand, by Assumption 1, every iterate must lie in the bounded set Lf (x0).
The intersection of M(x0,Δ0,G,Γ�) and Lf (x0) is finite, so every successful iterate
is drawn from a finite set. Next, observe that a successful point can be successful only
once because Step 3 in Figure 3.1 requires strict improvement. Therefore, there can
be only finitely many successful iterates; let k̂ denote the last successful iterate.

After iteration k̂, the set of search directions does not change. Further, by Con-
dition 9, there is a contraction in the step length along each direction at least once
per η iterations. Thus,

lim
k→∞

max
1≤i≤pk

{
Δ

(i)
k

}
= 0.

So, necessarily, min{Γ(i)
k } → +∞. This contradicts our original assumption. Hence,

the claim.
Both Lemma 5.3 and Lemma 5.5 lead to the following general result regarding

the step lengths. Additional notation is required for this proof. Define

Γ̃
(i)
k = Γ

(i)
k − Γmin.

This quantity is equal to the number of contractions required to go from Δmin to Δ
(i)
k .
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Theorem 5.6. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumptions 1 and 2. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3
or 4, 8, and 9, Then, there exists a set K ⊂ {1, 2, . . .} such that

lim
k∈K

{
max

1≤i≤pk

Δ
(i)
k

}
= 0.

Proof. By either Lemma 5.3 (using Assumption 2 and Conditions 4, 8, and 9) or
Lemma 5.5 (using Assumption 1 and Conditions 3 and 9), we have that there exists
an index j and set K such that

lim
k∈K

Γ
(j)
k = +∞.

Without loss of generality, assume that

Γ
(j)
k > η (Γmin + 1) for all k ∈ K,(5.16)

where η is as defined in Condition 9.

Then if k ∈ K, by (5.16), Γ̃
(i)
k > 0 and there has not been a success for at least

Γ̃
(j)
k iterations. On the other hand, by (5.16), �Γ̃(j)

k /η� > 0 and there has been at

least �Γ̃(j)
k /η� contractions in all other directions. Thus,

Γ̃
(i)
k ≥ �Γ̃(j)

k /η� for k ∈ K, 1,≤ i ≤ pk, i �= j.

Thus,

lim
k∈K

{
min

1≤i≤pk

Γ
(i)
k

}
= +∞.

Hence, the claim.

5.3. Convergence results. Using the machinery built in sections 5.1 and 5.2,
results following Theorems 2.1 and 2.2 are immediate.

Theorem 5.7. Consider the optimization problem (1.1), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2, either 3
or 4, 7, 8, 9. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 5.8. Consider the optimization problem (1.2), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4,
5, 7, 8, 9. Then

lim inf
k→+∞

χ(xk) = 0.

6. Numerical results. As compared to (synchronous) PPS, the advantage of
APPS is more efficient use of computation resources. Using PVM, the original APPS
was shown to be faster than PPS on several different examples [12]. In later exper-
iments on a small collection of test problems, “single-agent” versions of APPS (very
similar to the new APPS proposed here) using MPI and PVM were shown to be
overall faster than the original version of APPS using PVM [11].
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Table 6.1

Comparison of PPS and APPS: average results over parallel multiple runs.

Problem Method Final F Time (s) % Idle V1 V2 Evals Cache

UNC5
APPS 1.24×105 63.9 1.11 10 74 274 36

PPS 1.24×105 101.2 29.22 9 78 273 39

UNC6
APPS 1.24×105 73.1 0.85 86 66 306 36

PPS 1.24×105 106.1 17.64 135 69 345 39

CON5
APPS 1.39×105 72.5 1.05 11 1 342 39

PPS 1.39×105 106.8 28.24 7 3 325 37

CON6
APPS 1.39×105 97.1 0.82 129 2 435 43

PPS 1.39×105 106.0 17.61 111 3 355 32

HC
APPS 2.38×104 207.1 1.65 2 80 152 24

PPS 2.38×104 242.3 20.54 2 77 128 20

In this section, we present comparisons of the new version of APPS with PPS, both
using MPI. We use APPSPACK 4.0 [8, 13] for our comparisons because it implements
both PPS and APPS. The APPS implementation is identical to what is shown in
Figure 3.1, and the PPS implementation is the same as APPS except that, in Step 2,
we wait for all evaluations to be completed so that Yk = Xk. We used the default
settings for all parameters except that “Scaling” was set equal to the upper bounds
and “Step Tolerance” was set to 0.02. Full details of the implementation can be found
in [8].

The methods are compared on a set of five proposed benchmark test problems
in well-field design (UNC5, UNC6, CON5, CON6) and hydraulic capture (HC), as
described in detail in [5]. The problems are based on the MODFLOW [24] simulator
from the U.S. Geological Survey. Problems UNC5 and CON5 each have 10 variables,
UNC6 and CON6 each have 18 variables, and HC has 12 variables. The problems
have bound constraints and three nonlinear constraints. The nonlinear constraints
were treated by using an extreme barrier approach that sets f(x) = +∞ whenever
a constraint is violated. The nonlinear constraints are separated into two categories:
Category 1 is constraints that can be checked before the simulator is called and are
inexpensive to check; Category 2 is constraints that cannot be checked until after the
simulator has been called and are therefore expensive to check.

Table 6.1 compares APPS and PPS on the test problems. We ran each problem 10
times on 11 nodes of Sandia’s Catalyst Linux cluster, using MPICH [9, 10]. The Final
F column lists the optimal function value, Time (s) lists the average parallel run time
in seconds, % Idle lists the average per worker idle time, V1 lists the average number
of constraint violations for Category 1 constraints, V2 lists the average number of
constraints violations for Category 2 constraints, Evals lists the number of successful
(i.e., feasible) evaluations, and Cache lists the total number of evaluations (including
infeasible) that were looked up in the cache. Note that the sum of columns V2 and
Evals gives the total number of calls to the simulator. Because APPS is asynchronous,
the results can vary from run to run. In particular, it can converge to different local
minima. This happened twice for problem UNC6 and twice for problem CON5. The
function values were fairly close, but the other numbers (e.g., run times) were better,
so those results were removed from the averages. Otherwise, all the methods converged
to the same final value. We also had to discard one APPS run from the HC results
because it had a bogus time reported.
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Compared to PPS, APPS reduced the run time up to 37%. This can be attributed
to better load balancing, resulting is substantially less idle time per worker process.
The speculative nature of APPS can lead to more work: for problem CON6, APPS
had 22% more calls to the simulator and was only 8% faster. On the other hand, it
sometimes results in less work: for problem UNC6, APPS had 10% fewer calls to the
simulator and ran 31% faster.

7. Conclusions. We presented a new version of APPS based on a manager-
worker paradigm. This algorithm encapsulates either simple or sufficient decrease as
well as the ability to handle bound constraints. A nice feature of this version of APPS
is that it closely mirrors PPS (at least as described here).

In fact, neither PPS nor APPS has been presented in its most general form. For
example, these algorithms handle updating the step lengths in a particular way. At
unsuccessful iterations, the contraction factor in Step 5 is hardwired to 1

2 ; in fact,
this could be any fixed value in the interval (0, 1), with the additional requirement
that the value be rational in the simple decrease case. Similarly, an expansion factor
could be used on successful iterations in Step 4. In both cases, these terms could be
adaptive (i.e., different at each iteration). We also assume that the search directions
are fixed between successful iterations. This is not required for PPS; however, we have
presented it that way because it makes the description of APPS more straightforward.
Finally, it is possible to modify APPS so that the search directions are allowed to
change at even unsuccessful iterations provided that adequate controls are in place
for globalization.

Likewise, some of the assumptions and conditions employed in the convergence
analysis can be relaxed. We need not assume that the gradient is Lipschitz (Assump-
tion 4); instead, continuous differentiability is sufficient. Part (d) in Condition 3 can
be changed to say that either ρ is identically zero or it satisfies Condition 4; in other
words, the argument based on lattice structure is independent of the decrease condi-
tion. Part (e) in Condition 3 can be generalized to say that the pseudo step can be
anything of the form 2−ΓΔ0 for Γ ∈ Z. Part (b) in Condition 4 is more restrictive
than necessary for PPS (which only needs that ρ(t) monotonically decreases), but this
more restrictive assumption is needed by APPS. Condition 5 can be weakened, but
the resulting condition is much more complex (see Condition 1 in [15]).

The convergence theory borrows heavily from the analysis of GSS in [14, 15] as
well as the analysis of the original APPS [17]. The convergence results presented in
section 5 are weak convergence results because it is possible that only a subsequence of
the iterates will converge to a stationary point. Although strong convergence results
are possible in the synchronous case [14], it is unclear whether such assurances can
be made for the asynchronous algorithm because strong convergence requires that the
algorithm always take the best direction at each iteration. Local convergence results
exist for PPS [14] but are left as a topic for future study for APPS.

Just like the original version of APPS, the new version of APPS demonstrates
faster execution times than its synchronous counterpart. More information on the test
problems and a comparison of APPS with other derivative-free optimization methods
can be found in [5]. We used APPSPACK 4.0 [13] for testing, full details of which are
provided in [8].

We close by pointing toward the future. As we have already stated, one objective
of the redesign of APPS is to enable easier incorporation of methods for handling
linear constraints. In that case, the search directions must conform to the nearby
boundary [20, 15], so the ability to change the search directions in Step 4 makes this
relatively simple. This will be pursued in future research.
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Appendix A. Evolution of peer-to-peer to manager-worker. The switch
from the peer-to-peer version [12] to manager-worker was gradual and largely the
result of user requests. As mentioned in the introduction, peer-to-peer APPS is based
on the concept of what are called agents. Each agent handles a single direction (and
up to one corresponding trial point) and launches its own workers to execute the
function evaluation. Thus, there is one agent per search direction and the number
of search directions is necessarily fixed. The working assumption is that there is one
direction per processor and one processor per machine.

The first step in the evolution to the manager-worker design is motivated by
multiprocessor (i.e., SMP) machines. On a cluster of machines that each have, say,
four processors, it is more efficient to have one agent (as opposed to four) for every
four search directions. The peer-to-peer design remained intact, but a single agent
could handle multiple search directions. The directions sharing a common agent also
shared one common best point. In fact, this is equivalent to the original peer-to-peer
model with instantaneous communication between appropriate subsets of the agents.
Once agents were designed and implemented to handle multiple directions, having one
agent handle all directions was trivial.

The difference between this first manager-worker concept and the algorithm de-
scribed here is the handling of the search directions. Having a fixed set of search
directions is fairly crucial to the peer-to-peer design. In particular, it is implemented
so that there is at most one function evaluation per search direction at any given
time. The disconnected points described in section 4 cannot exist. Although it would
certainly be possible to design a peer-to-peer APPS that allows the search directions
to change as the optimization progresses, it is much simpler to do this in a manager-
worker context.
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