
SIAM J. SCI. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. C424–C452

A SCALABLE GENERATIVE GRAPH MODEL WITH COMMUNITY
STRUCTURE∗

TAMARA G. KOLDA† , ALI PINAR† , TODD PLANTENGA† , AND C. SESHADHRI†

Abstract. Network data is ubiquitous and growing, yet we lack realistic generative network
models that can be calibrated to match real-world data. The recently proposed block two-level Erdős–
Rényi (BTER) model can be tuned to capture two fundamental properties: degree distribution and
clustering coefficients. The latter is particularly important for reproducing graphs with community
structure, such as social networks. In this paper, we compare BTER to other scalable models and
show that it gives a better fit to real data. We provide a scalable implementation that requires only
O(dmax) storage, where dmax is the maximum number of neighbors for a single node. The generator is
trivially parallelizable, and we show results for a Hadoop MapReduce implementation for modeling a
real-world Web graph with over 4.6 billion edges. We propose that the BTER model can be used as a
graph generator for benchmarking purposes and provide idealized degree distributions and clustering
coefficient profiles that can be tuned for user specifications.

Key words. graph generator, network data, block two-level Erdős–Rényi (BTER) model, large-
scale graph benchmarks

AMS subject classifications. 05C80, 05C82, 90B15

DOI. 10.1137/130914218

1. Introduction. Network interaction data is now available from online social
interactions, computer-to-computer communications, financial transactions, collabo-
ration networks, telecommunications, and more. A major obstacle to working in the
field of network science is that access to data is restricted due to a combination of
security and privacy concerns; yet models, algorithms, software, and hardware are
struggling to keep pace with increasing demands for scalability and relevance. For
these reasons, network science researchers need scalable generative models for large-
scale graphs. Ideally, these generative models should capture salient features of the
networks being modeled.

Suppose we are given a graph representation of our data set. We introduce basic
terminology for those unfamiliar with graph theory. Let G = (V,E) be an undirected,
unweighted graph. We let V denote the set of vertices or nodes of the graph, and we
let E denote the set of edges where (i, j) ∈ E means there is an edge between nodes
i and j or, equivalently, that nodes i and j are adjacent. We assume that the graph
is simple, meaning that the edges are undirected and unweighted and that there are
no self-edges. Let Vi = { j | (i, j) ∈ E } denote the set of nodes that are adjacent to i;
then the degree of node i is di = |Vi|. The transitivity or clustering coefficient of node i
is defined as ci = | { (j, k) ∈ E | j, k ∈ Vi } |/

(
di

2

)
, and it is a measure of the proportion

of triangles that node i participates in compared to the number of possible triangles

∗Submitted to the journal’s Software and High-Performance Computing section March 25, 2013;
accepted for publication (in revised form) March 28, 2014; published electronically September 25,
2014. This work was funded by the GRAPHS Program at DARPA and by the Applied Mathematics
Program at the U.S. Department of Energy. Sandia National Laboratories is a multiprogram labora-
tory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

http://www.siam.org/journals/sisc/36-5/91421.html
†Sandia National Laboratories, Livermore, CA 94551 (tgkolda@sandia.gov, apinar@sandia.gov,

tplante@sandia.gov, scomand@sandia.gov).

C424

http://www.siam.org/journals/sisc/36-5/91421.html
mailto:tgkolda@sandia.gov
mailto:apinar@sandia.gov
mailto:tplante@sandia.gov
mailto:scomand@sandia.gov

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C425

[50]. Roughly speaking, ci captures the social cohesion around node i; for instance,
in a clique (i.e., a graph in which every node is adjacent to every other node), every
node has ci = 1.

In this paper, we consider how to reproduce two fundamental properties of graphs:
the degree distribution and the clustering coefficients by degree [49]. Let Vd =
{ i | di = d } be the set of nodes of degree d, and define nd = |Vd|. The degree distribu-
tion is specified by the sequence {nd }d∈N

. In most real-world networks representing
interaction data, there are a few nodes with high degrees and many nodes with low
degrees, with a smooth transition between them. In other words, the degree distribu-
tion is heavy-tailed, and this feature has long been considered critical in distinguishing
real networks from arbitrary sparse networks [2, 13, 43]. Let cd = 1

nd

∑
i∈Vd

ci be the
average clustering coefficient for nodes of degree d. The clustering coefficients by de-
gree are specified by the sequence { cd }d∈N

. The clustering coefficients of real-world
graphs are much higher than those of random graphs with the same degree distribu-
tion [18]. Nonetheless, most generative models fail to match clustering coefficients of
real-world graphs [42].

In previous work by a subset of the authors, we introduce the block two-level
Erdős–Rényi (BTER) model [44]. The BTER model can be tuned to capture both
the degree distribution and degreewise clustering coefficients for real-world networks.
The inputs to the BTER model are the sequences {nd }d∈N

and { cd }d∈N
; our goal is

to create a graph with similar behavior in these measures. To do this, BTER works as
follows. The nodes are divided into affinity blocks ; see Figure 1a. The fact that we can
infer community structure from local clustering coefficient measurements is justified
in the original BTER paper [44] and now has additional theoretical justification since
it has recently been shown that triangle-rich graphs resemble unions of dense blocks
[22]. Each node has an assigned degree in such a way that, in expectation, the degree
distribution matches what it specified by {nd }d∈N

. For each node, the links are
divided between local links within the affinity block (Phase 1 in Figure 1b) and global
links that may connect to any node (Phase 2 in Figure 1c). The proportion of local
links depends on the clustering coefficients specified by { cd }d∈N

. Edges are generated
by choosing endpoints in a probabilistic way, as is explained in detail further on. The
goal of this paper is to explain the specifics of the model and provide a scalable
implementation. We also provide additional evidence of the model’s usefulness.

1.1. Contributions. The BTER model [44] was previously introduced as a scal-
able model that can reproduce degree distributions and clustering coefficients. The
scalability is based on independent edge generation; i.e., there is no knowledge of
previously generated edges in deciding on the next edge. However, the original paper
[44] did not specify implementation details and, moreover, recommended an ad hoc
procedure for some of the parameter choices. In this paper, we make the following
contributions:

• We provide a detailed reference implementation that clearly explains how to
choose the BTER parameters to match the specified degree distribution and cluster-
ing coefficient profile. We note that there is no iterative optimization to fit BTER;
the parameters of the model are directly calculated from the inputs. The edges are
generated independently and in an arbitrary order, so the BTER generative model
can potentially be used in streaming scenarios.

• We present efficient data structures for a scalable implementation, requiring
only O(dmax) storage and O(log dmax) operations per edge, where dmax is the maxi-
mum degree. Since our approach generates all edges independently, it can be easily
parallelized. We provide examples demonstrating the scalability.

C426 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

(a) Preprocessing:
Distribution of nodes into

affinity blocks.

(b) Phase 1: Local links
within each affinity block.

(c) Phase 2: Global links
across affinity blocks.

Fig. 1. BTER model phases [44].

• We demonstrate that BTER gives good approximations to the degree distri-
butions and clustering coefficient behaviors of several large, heavy-tailed, real-world
graphs. We consider examples from the Laboratory for Web Algorithms [30], in-
cluding a graph with over 130 million nodes and 4.6 billion edges, the largest publicly
available graph of which we are aware. We also compare BTER to competing methods
on a pair of smaller graphs.

• We consider how BTERmay be used for arbitrary benchmarking purposes when
there is no target graph to match. Since the model requires a degree distribution and
clustering coefficient profile as input, we focus on how to generate these. In particular,
we recommend the generalized log-normal distribution for the degrees as an alternative
to the standard power law.

For very large graphs, the inputs can be expensive to compute, especially the
clustering coefficients. However, we have recently proposed a sampling method that
scales to very large graphs [47, 25].

1.2. Related work. Since the goal of this paper is to focus on the implemen-
tation and scalability of BTER, we limit our discussion to the most salient related
models. A more thorough discussion of related work can be found in the paper that
originally proposed the BTER model [44].

The majority of graph models add edges one at a time in a way that each random
edge influences the formation of future edges, making them inherently serial and
therefore unscalable. The classic example is preferential attachment [2], but there
are a variety of related models; see, e.g., [26, 29]. These models are more focused on
capturing qualitative properties of graphs and typically are difficult to match to real-
world data [42]. Perhaps the most relevant is [21], which creates a graph with power
law degree distribution and then “rewires” it to improve the clustering coefficients.
The musketeer model starts with a given graph and then does multilevel rewiring
to attempt to preserve certain features of the original [23]. Another related model,
the clustering model proposed by Newman [39], assigns “individuals” to “groups”
(a bipartite graph with individual and group nodes) and then creates a graph of
connections between individuals by assigning connection probabilities to each group;
in other words, each group is modeled as an Erdős–Rényi graph.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C427

A widely used model for modeling large-scale graphs is the stochastic Kronecker
graph (SKG) model, also known as R-MAT [8, 28]. The generation process is easily
parallelized and can scale to very large graphs. Notably, SKG has been selected as
the generator for the Graph 500 Supercomputer Benchmark [20] and has been used in
a variety of other studies [14, 32, 35, 34, 19, 15, 33, 24]. Unfortunately, SKG has some
drawbacks: (1) It can be extremely expensive to fit to real data (using KronFit, the
SKG parameter fitting algorithm proposed by the SKG inventors), and even then the
fit is imperfect [28]; (2) it can generate only log-normal tails (after a suitable addition
of random noise) [46, 45], limiting the degree distributions that it can capture; and
(3) most importantly, it rarely closes wedges, so the clustering coefficients are much
smaller than what is produced in real data [42, 25].

Another model of relevance is the Chung–Lu (CL) model [10, 11, 1]. It is very
similar to the edge-configuration model of Newman, Watts, and Strogatz [38]. Let
di denote the desired degree for node i. In the CL model, the probability of an edge
is proportional to the product of the degrees of its endpoints; i.e., the probability
of edge (i, j) is ∝ didj . Edges can be generated independently by picking endpoints
proportional to their desired degrees. If all degrees are the same, CL reduces to the
well-known Erdős–Rényi model [16]. The CL model is often used as a null model;
for example, it is the basis of the modularity metric [40]. Graphs generated by the
CL model and the SKG model are, in fact, very similar [41]. The advantage of the
CL model is that it can be better tuned to real-world degree distributions. The
disadvantage of the model is that, like SKG, it rarely closes wedges. CL occurs as a
special case of BTER when Phase 1 is skipped (see section 3). The CL construction
is a very important part of BTER and will be explained in more detail in the next
section.

2. Notation and background. Let G = (V,E) be an undirected and un-
weighted graph, where V denotes the set of vertices and E denotes the set of edges. We
let n = |V | and m = |E| denote the total number of vertices and edges, respectively.
The set of node i’s neighbors and the degree of node i are, respectively,

Vi ≡ { j | (i, j) ∈ E } and di = |Vi|.
The set of degree-d nodes and the number of degree-d nodes are, respectively,

Vd = { i | di = d } and nd = |Vd|.
The set {nd } defines the degree distribution. Observe that the degree distribution
specifies the total number of nodes and edges:

(2.1) n =
∑
d

nd and m =
1

2

∑
d

d · nd.

For convenience, we use the notation dmax = max { di | i ∈ V }.
2.1. Clustering coefficients. We can discuss clustering coefficients in terms of

wedges, closed wedges, and triangles. A wedge is a path of length 2. Figure 2 shows a
wedge centered at node j; i.e., the path i-j-k is a wedge. We say wedge i-j-k is closed
if (i, k) ∈ E; otherwise, the wedge is called open. A closed wedge forms a triangle,
i.e., a three-cycle. The number of wedges centered at node i is

(
di

2

)
= di(di − 1)/2.

The clustering coefficient at node i is

ci =
of closed wedges centered at node i

wedges centered at node i
=

| { (j, k) ∈ E | j, k ∈ V (i) } |(
di

2

) .

C428 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

j

i

k

Fig. 2. Wedge centered at node j. The wedge is closed if (i, k) ∈ E.

This is the proportion of closed wedges divided by the total number of wedges. For
BTER, we are specifically interested in clustering coefficient per degree [50], defined
as

cd =
of closed wedges centered at a node of degree d

wedges centered at a node of degree d
=

1

nd

∑
i∈Vd

ci.

To summarize an entire graph, it is often convenient to consider the global clustering
coefficient (GCC) [50, 3], defined as

c =
of closed wedges

wedges
.

Note that this is not the mean of the ci’s. Since every triangle corresponds to three
closed wedges, the number of closed wedges is three times the number of triangles.

2.2. Erdős–Rényi graphs. As described in section 3, BTER uses Erdős–Rényi
to model its affinity blocks. An Erdős–Rényi graph [16] on n vertices with connection
probability ρ is a graph such that each pair of vertices is independently connected
with probability ρ. We refer to ρ as the connectivity. If ρ is a constant, we call this
a dense Erdős–Rényi graph; if ρ = O(1/n), then we call this a sparse Erdős–Rényi
graph.

2.3. Chung-Lu graphs. BTER uses a variation on CL for its global links that
span across affinity blocks. Here we explain salient details that are relevant to the
implementation discussion.

The CL model [10, 11, 1] approximates the probability that edge (i, j) exists by

Pr ((i, j) ∈ E) =
didj
2m

,

where di indicates the desired degree of node i. We can perform an independent coin
flip for each of the possible n2 edges, but this is too expensive. We consider a “fast”
version of the CL model that generates edges by independently choosing endpoints
proportional to their degrees. Rather than doing an independent coin flip for each of
n2 possible edges, we can do 2m coin flips to pick two random endpoints per edge.
Each endpoint is picked independently such that the probability of picking node i is

Pr (i) = di/2m.

Hence, the probability (or, more precisely, the expected value) of edge (i, j) after
picking m edges is

Pr ((i, j) ∈ E) = m · 2 · Pr (i) · Pr (j) = didj
2m

.

The factor of 2 is because (i, j) and (j, i) are equivalent for an undirected graph.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C429

Let Di correspond to the random variable that is the degree of node i for a single
graph generated according to this procedure. In the “fast” version, it is easy to see
that the value of Di is Poisson distributed with mean di [15], so E(Di) = di, i.e.,
the expected value of Di is di. Note that CL admits nonintegral desired degrees. If
the desired degree is di = 3.5, then E(Di) = 3.5 even though every realization Di is
integral.

Despite the variation in individual degrees, the degree distribution is usually a
good match to the desired one because there is spill-over from adjacent degrees. For
instance, some nodes that were expected to become degree 4 are instead degree 5
and vice versa. This will not be the case if there are gaps in the degree distribution
(i.e., n3, n5 � 0 and n4 = 0). Also, degree-1 nodes may pose a particular problem.
According to the calculations in [15], approximately 36% of the pool of potential
degree-1 nodes will not be selected (i.e., have degree zero) and another 28% will have
degree 2 or larger. To counteract these problems, [15] proposes to increase the pool
of potential degree-1 nodes while keeping the total probability of potential degree-1
nodes constant. Specifically, we “blow up” the set of degree-1 nodes by a factor β ≥ 1.
Hence, we add (β−1) ·n1 nodes with desired degree d1, but we adjust the probability
of picking any individual degree-1 node so that

Pr (i) =

{
di/2m if di ≥ 2,

β−1/2m if di = 1.

The BTER algorithm has a similar issue with degree-1 nodes, so the reference imple-
mentation includes the option to specify a blowup factor, β.

Finally, we note that since each endpoint and each edge is picked independently,
a graph generated according to fast CL may contain self-edges and repeat edges. We
have ignored these details in the discussion above because the practical impact has
been small in our experiments (we simply discard such edges).

3. BTER generative graph model. We give a high-level overview of BTER
in section 3.1 and discuss the challenges of a scalable implementation in section 3.2.
The remainder of the section addresses the proposed solutions to these challenges and
presents the implementation.

3.1. The BTER model. BTER is based on the premise that a graph with a
heavy-tailed degree distribution and high clustering coefficients must contain dense
Erdős–Rényi blocks; moreover, the distribution of the sizes of those groups follows
the same type of distribution of the degrees [44]. Therefore, BTER organizes nodes
into affinity blocks such that nodes within the same affinity block have a much higher
chance of being connected than nodes at random, but BTER also behaves like the CL
model in that it is able to match an arbitrary degree distribution.

The BTER model requires two user-specified inputs: (1) the desired degree dis-
tribution, {nd }d∈N

, and (2) the desired clustering coefficients by degree, { cd }d∈N
.

These quantities may be measurements from an existing graph or set arbitrarily, e.g.,
for benchmark purposes. (We note that the original description in [44] did not take
the original clustering coefficients but rather a function to determine the connectivity.)
The desired number of nodes and edges can be computed from the degree distribution
per (2.1). There are three main steps to the graph generation, as described below.
The steps are depicted in Figure 1.

Preprocessing. Imagine starting with n isolated vertices. Each vertex is assigned
a degree, based on the degree distribution {nd}. So we arbitrarily assign n1 vertices to

C430 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

have degree 1, n2 to have degree 2, etc. We then partition the n vertices into affinity
blocks. For reasons that will be explained in the details that follow, an affinity block
ideally contains d + 1 vertices that are assigned degree d. The idea is that each
affinity block can potentially form a clique, in which case every node in that block
has a clustering coefficient of 1. Note that there are many small blocks with vertices
of low degree, and a few large blocks of high-degree vertices. At this stage, no edges
have been added.

Phase 1. This phase adds edges within each affinity block. Each block is a dense
Erdős–Rényi graph, where the density depends on the size of the block. For a block
involving degree-d vertices, the density is determined based on cd. We show how
to choose the connectivity within each block to ensure that each vertex achieves its
desired clustering coefficient and is not incident to more edges than its desired degree
(in expectation).

Phase 2. This phase adds edges between the blocks. Consider some vertex i with
an assigned degree di. Suppose it is already incident to d′i edges from Phase 1. We set
wi = di − d′i to be the excess degree1 of i. We must create ei edges incident to vertex
i to satisfy its degree requirement. We construct a CL graph with degree sequence
{wi }ni=1 to complete the graph construction.

3.2. Developing a scalable implementation. Our goal is to show that it
is possible to have a highly scalable implementation of the BTER method. The
main goal is to have independent edge insertions so that the edge generation can be
parallelized.

As stated, Phase 2 edge insertions must happen after Phase 1, because we need to
know the excess degrees. We parallelize this process by computing the expected excess
degree. Given all the input parameters, we can precompute the expected excess degree
for any vertex (this requires compact representations and data structures) during the
preprocessing. From this, we can precompute the total number of Phase 1 and Phase
2 edges.

To perform a parallel edge insertion, we first decide randomly whether this should
be a Phase 1 or Phase 2 edge. For a Phase 1 edge, we select a random affinity block
(with the appropriate probability) and create an edge between two distinct randomly
selected block members. For a Phase 2 edge, we perform a CL edge insertion based
on expected excess degrees. Because every edge is generated independently, there will
be duplicates, but these are discarded in the final graph.

Given the structure of parallel edge insertion, the main challenges in developing
a scalable implementation are as follows:

• Preprocessing data structures. A näıve implementation of the preprocessing
step would require O(n) variables and storage by storing the Phase 1 and
Phase 2 degrees of every node. We design compact representations and data
structures for the affinity blocks. This contains all the relevant information
with minimal storage.

• Repeats in Phase 1. Independent edge generation in Phase 1 leads to many
repeated edges without enough distinct edges, and this affects the overall de-
gree distribution when edge repeats are removed. We show how to determine
the number of extra Phase 1 edges to be inserted to rectify this.

1This definition of excess degree should not be confused with the “excess degree distribution” of
Newman [37].

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C431

• The degree-1 problem of Phase 2. A parallel implementation of Phase 2 results
in numerous degree-1 vertices becoming isolated. We use a fix for this dis-
cussed in section 2.3, which is different than the one proposed in the original
BTER paper [44].

Once these issues are addressed, we have an embarrassingly parallel edge generation
algorithm that requires only O(log dmax) work per edge. The remainder of this section
gives an in-depth but informal presentation of our implementation. Detailed algorithm
specifications at pseudocode level are also provided.

3.3. Preprocessing. Let di denote the (desired) total degree of vertex i and
wi denote its (desired) excess degree. For convenience, the nodes are indexed by
increasing degree except for degree-1 nodes, which are indexed last. Hence, if di, dj ≥ 2
and i < j, then di ≤ dj . For an example, see the numbering in Figure 3.

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 · · · 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40

41 42 43

44 45

46

47

Degree 1

Degree 2

Degree 3

Degree 4

Degree 5

Degree 6

Degree 7

Degree 8

Degree 9

Fig. 3. Example of affinity blocks and groups for a graph of 73 nodes. Connected nodes denote
the same affinity block. The same color denotes the same group membership. (See online version
for color.)

In the preprocessing phase, we assign nodes to affinity blocks. We let bi denote
the block assignment of node i. For the assignment to affinity blocks, degree-1 nodes
are ignored. The remaining nodes are assigned to affinity blocks in order (of degree).
A homogeneous affinity block has d + 1 nodes of degree d. In Figure 3, the blocks
are denoted by colored ovals, and 4-5-6 is a homogeneous block. The vast majority
of (low-degree) nodes are assigned to homogeneous affinity blocks. However, there
are not always enough nodes of degree d to fill in a homogeneous block; therefore, we
also have a few (at most dmax) heterogeneous affinity blocks with nodes of different
degrees. For instance, in Figure 3, 19-20-21 is a heterogeneous block.

For Phase 1, we let ib denote the starting index of block b, db denote the minimum
degree of block b, ρb denote its desired connectivity, nb denote the number of nodes,
mb denote the desired number of edges in the affinity block, and wb denote the block
weight, which is the number of edges to be inserted that accounts for expected repeats
(see section 3.6). Not all this information needs to be saved. To generate Phase 1
edges, we need only ib, nb, and wb to know the nodes that are involved with each
block and how many edges to insert. The process will insert wb edges which will,
in expectation, produce mb unique edges so that each node within the block will
have expected local (i.e., inside the affinity block) degree mb/

(
nb

2

)
. However, these

C432 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

three values are not what are stored since we can store even less information for more
efficiency.

We can compress the data further since all affinity blocks of the same size and
minimum degree can be grouped together into an affinity group—all blocks in the
same group share the same block size and weight. In Figure 3, all nodes with the
same color are in the same affinity group, e.g., 1–21 are in the same affinity group,
likewise nodes 22–33, etc. The information needed to store an affinity group boils
down to four items of information: ig, the starting index of the group; bg, the number
of blocks in the group; ng, the size of each block; and wg, the total weight of all blocks
in the group. The maximum number of groups is bounded by dmax, so we store at
most 4 · dmax values.

Phase 2 needs to build a CL model using the excess degrees, {wi }. We note that
these values are computed in advance and are fixed throughout the entire process.
We can exploit the homogeneity of nodes of the same degree to save space for this
calculation as well. In a block where all nodes have the same degree, we say the nodes
are bulk nodes. In a block with nodes of differing degrees, all nodes with degree equal
to the minimum degree are still bulk nodes. We refer to the remaining nodes as filler
nodes. In Figure 3, nodes 1–20 are degree-2 bulk nodes, nodes 22–30 are degree-3 bulk
nodes, nodes 34–36 are degree-4 bulk nodes, and so on. Node 21 is a degree-3 filler
node, nodes 31–33 are degree-4 filler nodes, etc. It is possible to have either no bulk
nodes or no filler nodes for a given degree. In Figure 3, there are no filler degree-2
nodes and no bulk degree-6 nodes. Observe that all bulk nodes of degree d (for any
d) are in blocks of the same size and connectivity (i.e., the same internal degree);
therefore, they all have the same excess degree. The filler nodes of degree d (for any
d) participate in at most one block and so all have the same excess degree. This means
that there are two possible values for excess degree for the set of nodes with desired
degree d. Hence, to generate Phase 2 links we need just five values for degree d: nfill

d

and nbulk
d , the number of filler and bulk nodes; wfill

d and wbulk
d , the total weight for

filler nodes and for bulks nodes, which is exactly the total excess degree for each; and
the starting index id. Technically, the starting index can be computed from {nd },
but it reduces the work to store these indices explicitly. However, we actually do not
store nbulk

d since it can be computed using nd and nfill
d . Additionally, because of how

they are used, it is more convenient to store wd = wfill
d +wbulk

d and rd = wfill
d /wd than

wfill
d and wbulk

d . Hence, the total working storage for Phase 2 information is 5 · dmax

values.
The total storage (including inputs) needed by the generation routine is 10 · dmax

values (the sequence { cd } is not retained). It is possible to modify the core data
structures to store only the distinct degrees instead of maintaining a continuum of
degrees through dmax. This would change the storage requirement to O(duniq) instead
of O(dmax), where duniq is the number of distinct degrees in the graph. However, we
present our ideas based on O(dmax) storage for clarity of presentation.

For convenience, notation is described in Table 1. The node- and block-level
variables are not used in the algorithms.

3.4. Preprocessing algorithm. The BTER setup procedure is described in
Algorithm 1. The inputs are the degree distribution, {nd }; the clustering coefficients
per degree, { cd }; and the blowup factor for degree-1 nodes, β.

The method precomputes the index for the first node of each degree, { id }, and
the number of nodes with degree greater than the degree d, {n′

d }. The latter is not
saved after the preprocessing phase.

The degree-1 nodes are handled in a special way. All degree-1 nodes are designated

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C433

Table 1

Description of variables. A � symbol in the second column indicates that this variable is
explicitly computed and stored for use by the sampling procedure; a × symbol means the variable is
not explicitly computed. The last column gives the formula to derive it from the stored values.

Scalars
n Total number of nodes n =

∑
nd

m Total number of edges m = 1
2

∑
d · nd

w Total number of edges to insert w = w(1) + w(2)

dmax � Largest (desired) degree
bmax × Total number of affinity blocks bmax =

∑
g bg

gmax � Total number of affinity groups gmax ≤ dmax

β � Blowup factor for degree-1 vertices
Node level i = 1, . . . , n

di × Degree (desired) of node i
bi × Block id for degree i

wi × Excess degree of node i wi =
1
2
[di − (ρbi · dbi)]

Block level b = 1, . . . , bmax

db × Minimum degree in block b
ρb × Connectivity of degree b ρb = 3

√
cdb

nb × Number of nodes in block b nb = db + 1

mb × Number of unique edges in block b mb = ρb
(nb

2

)

wb × Weight of block b wb =
(nb

2

)
ln(1/(1 − ρb))

Degree level d = 1, . . . , dmax

nd � Number of nodes of degree d
cd � Mean clustering coefficient for nodes of degree d
id � Index of first degree of degree d
n′
d Number of nodes of degree greater than d n′

d =
∑

d′>d n′
d′

nfill
d � Number of fill nodes of degree d

nbulk
d Number of bulk nodes of degree d nbulk

d = nd − nfill
d

wd � Excess degree of nodes of degree d
rd � Ratio of fill excess degree for degree d

wfill
d Excess degree of fill nodes of degree d wfill

d = rd · wd

wbulk
d Excess degree of bulk nodes of degree d wbulk

d = wd − wfill
d

Group level g = 1, . . . , gmax

ig � Index of first node in group g
bg � Number of affinity blocks in group g
ng � Number of nodes per block in group g
wg � Weight of group g (including duplicate edges)

Phase level k = 1, 2

w(k) Weight of phase k w(1) =
∑

g wg

w(2) =
∑

wd

as “fill” nodes. The number of candidate degree-1 nodes may be increased using the
blowup factor, β. However, if the blowup is used, the majority of the (desired) degree-
1 nodes will ultimately have degree 0 and can be removed in postprocessing.

The main loop walks through each degree, determining the information for Phases
1 and 2. It first allocates degree-d nodes as fill nodes for the last incomplete block, if
needed. The number of nodes necessary to complete the last incomplete block in the
previous group is denoted by nfill

∗ . The excess degree of any fill nodes depends on the
internal degree of the last incomplete block, denoted by d∗. The excess degree is used
to determine the weight of the degree-d fill nodes for Phase 2, wfill

d .
If more nodes of degree d remain, these are allocated as bulk nodes, and a new

group is formed. The number of bulk nodes of degree d is denoted by nbulk
d . For the

new group, we determine the index of the first node, the number of blocks, and the
size of each block. The very last block of the very last group is special because the

C434 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

remaining nodes may not be enough to fill it. For simplicity, and because it is often
the case for heavy-tailed networks, we assume the last group contains only one block.
This simplifies the task of handling it as a special case. We compute excess degree
for these bulk nodes and then the corresponding weight of degree-d bulk nodes for
Phase 2, wbulk

d . We also compute the weight of the group, wg, according to a special
formula, as justified in section 3.6. Finally, we compute the number of nodes needed
to fill out the final block in the group currently being processed, nfill∗ .

Rather than storing wfill
d and wbulk

d directly, it is easier (for the edge generation
phase) to have their sum, wd, and the ratio of fill nodes, rd. Likewise, we do not
return nbulk

d since it can be easily recomputed using nd and nfill
d . We do return id,

but this step can be omitted and recomputed if this is more efficient (e.g., reducing
communication to workers in a parallel setting). Finally, we no longer need to keep
{ cd } after the preprocessing is complete.

3.5. Phase 1. Phase 1 creates intrablock links. Each affinity block is modeled
as an Erdős–Rényi graph. An overwhelming majority of the triangles are formed in
this phase, and thus we pick the Erdős–Rényi constant, ρ, for the block to match
the target clustering coefficient c. A vertex of degree d and clustering coefficient c
is incident to c · (d2) triangles. Assume this vertex is grouped with other vertices of
degree d into a block with d + 1 vertices, which holds for all homogeneous blocks. If
we build an Erdős–Rényi graph of this block with parameter ρ, then this vertex is
expected to be incident to

(
d
2

)
ρ3 triangles. Solving for ρ yields ρ = 3

√
c. Therefore,

for block b, the connectivity is ρb = 3
√
cdb

, where db denotes the minimum degree in
the block (since most blocks are homogeneous, this choice works well). Note that the
clustering coefficients of vertices will be higher if we consider only the affinity blocks.
This is to compensate for the edges that will be added in Phase 2 to increase the
number of wedges—likely without contributing any triangles.

The difficulty in Phase 1 is that we expect a preponderance of repeat edges be-
cause edges are generated independently. Consider affinity block b with nb nodes
and connectivity ρb, meaning that each node in block b wants internal degree ρb · db.
BTER wants approximately mb = ρb

(
nb

2

)
distinct edges in block b. Determining the

number of draws with replacement to get a desired number of distinct items can be
cast as a coupon collector problem. Specifically, the coupon collector problem is as
follows: “Suppose we have a box with x distinct coupons. We draw a coupon and
return it to the box (sampling with replacement). How many draws do we need to
find y distinct coupons?” Our problem is slightly different than the standard problem
since we want to draw y distinct edges, where y = mb may not be integral; this is
fine since the goal is to achieve mb distinct edges in expectation. We have developed
a good approximation for the expected number of edges that need to be inserted:

(3.1) wb =

(
nb

2

)
ln(1/(1− ρb)).

The proof is provided in Appendix A.
We illustrate the utility of (3.1) by an example with nb = 10 nodes and connectiv-

ity ρb = 0.5, corresponding to mb = 22.5 edges, on average. In this case, the formula
predicts that we need to do wb = 31.1916 draws, in expectation, to see the desired
number of unique edges, in expectation. We do 10,000 random experiments as follows.
For i = 1, . . . , 10,000, the random variable Xi ∼ Poisson(wb) is the number of items
drawn from the

(
nb

2

)
= 45 possible edges, and Yi is the number of those items that

are unique. A histogram of the Yi values is shown in Figure 4. The average number
of unique items is exactly the desired value.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C435

Algorithm 1 BTER setup.

1: procedure bter setup({nd }, { cd }, β)

Number nodes from least degree to greatest, except degree-1 nodes are last
2: i2 ← 1
3: for d = 3, . . . , dmax do
4: id ← id−1 + nd−1

5: end for
6: i1 ← idmax + ndmax

Compute number of nodes with degree greater than d
7: for d = 1, . . . , dmax do
8: n′

d ←
∑

d′>d n
′
d′

9: end for

Handle degree-1 nodes
10: nfill

1 ← β · n1, w1 ← 1
2
n1, r1 ← 1

Main loop
11: g ← 0, nfill

∗ ← 0, d∗ ← 0
12: for d = 2, . . . , dmax do
13: if nfill

∗ > 0 then � Try to fill incomplete block from current group
14: nfill

d ← min(nfill
∗ , nd)

15: nfill
∗ ← nfill

∗ − nfill
d

16: wfill
d ← 1

2
nfill
d (d− d∗)

17: else
18: nfill

d ← 0, wfill
d ← 0

19: end if
20: nbulk

d ← nd − nfill
d

21: if nbulk
d > 0 then � Create a new group for degree-d bulk nodes

22: g ← g + 1
23: ig ← id + nfill

d

24: bg ← �nbulk
d /(d+ 1)�

25: ng ← d+ 1
26: if bg · (d+ 1) > (n′

d + nbulk
d) then � Special handling of last group

27: if bg �= 1 then throw error
28: ng ← (n′

d + nbulk
d)

29: end if
30: ρ∗ ← 3

√
cd

31: d∗ ← (ng − 1) · ρ∗
32: wbulk

d ← 1
2
nbulk
d · (d− d∗)

33: wg ← bg · 12ng(ng − 1) · log(1/1− ρ∗)
34: nfill

∗ ← (bg · ng)− nbulk
d

35: else
36: wbulk

d ← 0
37: end if
38: wd ← wfill

d +wbulk
d , rd ← wfill

d /wd

39: end for

40: return { id } , {wd } , { rd } , {nfill
d } , {wg } , { ig } , { bg } , {ng }

C436 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

Unique Items

F
re

qu
en

cy

n
b
 = 10, ρ

b
 = 0.5, w

b
 = 31.1916

Ideal=22.5

Average

Fig. 4. Distribution of the number of unique edges on 10,000 random trials.

From (3.1), we can determine the number of extra edges needed in Phase 1.
Specifically, we insert w(1) =

∑
b wb edges to get a total of m(1) =

∑
b mb unique

Phase 1 edges. We let wg be the sum of the weights of all its constituent blocks. To
generate a Phase 1 edge, the process for a single edge proceeds as follows:

1. Pick an affinity group randomly, where the probability of picking group g is
proportional to its weight, wg.

2. Pick a block within the affinity group uniformly at random (all blocks within
the same group have the same weight).

3. Pick two nodes uniformly at random without replacement2 from the selected
block—these two nodes form an edge.

The first step is a weighted sampling step and requiresO(log gmax) work, where gmax ≤
dmax is the total number of affinity groups. The second and third steps are constant
time operations.

3.6. Phase 2. Phase 2 is simply applying the CL model on the expected excess
degrees. In creating an edge, we choose two nodes independently. Those nodes are
chosen proportional to their excess degree. For node i in group b, let wi =

1
2 [di− (ρb ·

db)] denote half its excess degree. The total number of edges that should be inserted
in Phase 2 is w(2) =

∑
iwi. Ignoring duplicate edges (which are fairly rare in our

experiments), we have m(2) = w(2) Phase 2 edges.
Let nfill

d and nbulk
d be the number of filler and bulk nodes of degree d, let wd =∑

i∈Vd
wi be the weight of all degree-d nodes, and let rd be the proportion that are

filler nodes. Inserting a Phase 2 edge proceeds as follows:
1. Pick degree d, where the probability of picking degree d is proportional to

wd.
2. Pick between filler and bulk nodes by selecting a uniform random number

x ∈ [0, 1] and choosing filler if x < rd and bulk otherwise.

2The terminology “without replacement” means that the first node is selected uniformly at
random from the nb nodes in block b and the second node is selected uniformly at random from the
remaining nb − 1 nodes in block b.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C437

3. Pick a filler or bulk node (as determined in step 2) of degree d, uniformly at
random.

The first step is a weighted sampling step and required O(log(dmax)) work, while the
other two steps are constant time operations.

One complication in Phase 2 is that getting the correct number of degree-1 nodes
poses a problem—approximately 36% of the pool of potential degree-1 nodes will not
be selected and another 28% will have degree 2 or larger. A fix for this problem has
been proposed in [15], which involves increasing the pool of degree-1 nodes, without
changing the expected number of edges that will be connected to these vertices. This
increase in the pool size is controlled by the “blowup factor,” β ≥ 1. This is included
in the setup described in Algorithm 1 (line 10).

3.7. Independent edge generation. Lastly, we pull everything together to
explain the independent edge generation. We insert a total of w = w(1) +w(2) edges,
flipping a weighted coin for each edge to determine if it is Phase 1 or Phase 2. We
expect to generate a total of m = m(1) +m(2) edges.

Generating the edges is extremely inexpensive: O(log(dmax)) per edge. The ex-
pensive step is deduplication, where extra copies of repeated edges are removed. The
same difficulty exists for the current Graph 500 (SKG) benchmark. Some may argue
that duplicate edges are a useful feature since real data also has duplicates, but it is
not clear that the duplication rates are similar to those observed in real data.

3.8. BTER sampling implementation. BTER edge generation is shown in
Algorithm 2. The procedure Random Sample does a weighted sampling according
to a specified discrete distribution. For p bins, the cost is O(log(p)). For each edge, we
randomly select between the phases using a weighted coin. A Phase 1 edge requires
one sample from a discrete distribution of size gmax and three additional random
values drawn uniformly from [0, 1]. A Phase 2 edge requires two samples from a
discrete distribution of size dmax and four additional random values drawn uniformly
from [0, 1]. Since gmax ≤ dmax, an upper bound on the cost per edge is the cost of one
discrete random sample on a distribution of size dmax plus four random values drawn
uniformly from [0, 1].

In Algorithm 2, we generate each edge independently. It may also be possible
to “bulk” the computations by first determining the total number of edges for each
phase and perform the computation for each phase separately. Within each phase,
the procedure itself can be easily vectorized to boost runtime performance, as in
MATLAB.

3.9. Edge deduplication. Any method can be used for deduplication. In gen-
eral, the simplest procedure is to hash the edges in such a way that (i, j) and (j, i)
hash to the same key. Then it is easy enough to sort each bucket to remove dupli-
cates. In a parallel environment, since we are hashing by edge and not vertex, there
should not be load balancing problems. In fact, hashing by a single endpoint is not
recommended because of the heavy-tailed nature of the graph.

3.10. Implementations. We have a reference implementation in MATLAB
that is available at http://www.sandia.gov/∼tgkolda/feastpack/. We have also im-
plemented the method in Hadoop MapReduce and use this version in some of our
experiments. Since the BTER algorithm generates edges independently, map tasks
can perform all the work of creating edges, and reduce tasks simply remove duplicate
edges; hence, the implementation runs as a single MapReduce job. Each map task
is given the desired degree and clustering coefficient, which is sufficient to compute

http://www.sandia.gov/~tgkolda/feastpack/

C438 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

Algorithm 2 BTER sample.

1: procedure bter sample({nd } , { id } , {wd } , { rd } , {nfill
d } , {wg } , { ig } , { bg } , {ng })

2: w(1) ←∑
g wg , w

(2) ←∑
wd, w← w(1) + w(2)

3: E ← ∅
4: for j = 1, . . . , w do
5: r ∼ U [0, 1]
6: if r < w(1)/w then
7: E ← E ∪ bter sample phase1({wg } , { ig } , { bg } , {ng })
8: else
9: E ← E ∪ bter sample phase2({wd } , { rd } , {nd } , {nfill

d } , { id })
10: end if
11: end for
12: return E

13: procedure bter sample phase1({wg } , { ig } , { bg } , {ng })
14: g ← random sample({wg }) � Choose group
15: r1 ∼ U [0, 1], δ = ig +
r1 · bg� · ng � Choose block and compute its offset
16: r2 ∼ U [0, 1], i←
r2 · ng�+ δ � Choose 1st node
17: r3 ∼ U [0, 1], j ←
r3 · (ng − 1)�+ δ � Choose 2nd node
18: if j ≥ i then
19: j ← j + 1
20: end if
21: return (i, j)

22: procedure bter sample phase2({wd } , { rd } , {nd } , {nfill
d } , { id })

23: i← bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

24: j ← bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

25: return (i, j)

26: procedure bter sample phase2 node({wd } , { rd } , {nd } , {nfill
d } , { id })

27: d← random sample({wd }) � Choose degree
28: r1 ∼ U [0, 1], r2 ∼ U [0, 1]
29: if r1 < rd then
30: i←
r2 · nfill

d �+ id � Fill node
31: else
32: i←
r2 · (nd − nfill

d)�+ (id + nfill
d) � Bulk node

33: end if
34: return i

affinity blocks and sampling probabilities. Each map task uses a different seed for
random number generation used in creating edges. Map tasks are assigned a fixed
number of edges to generate. The default is one million edges, so a graph of w edges
requires w/106 map tasks. There is no HDFS input file for the map tasks; instead, we
wrote a subclass of org.apache.hadoop.mapreduce.InputFormat that causes a
map task to generate a given number of records. For each edge, the map emits a
key-value pair consisting of a hash value for the edge (based on the two endpoints)
and the endpoints. Note that there is no assignment of specific nodes to specific
map or reduce tasks. The reducer tasks collect edges with the same hash value and
remove any duplicates before emitting the final list of all edges. We enable Hadoop
compression between the map and reduce phases for faster performance.

4. Numerical comparisons. We consider the performance of BTER on various
real-world data sets, including what is currently the largest publicly available graph

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C439

modeled in the sense of matching degree distribution. We provide additional plots in
the supplementary online materials, specifically, log-binned data as well as cumulative
degree distributions.

4.1. Small data. In Figure 5, we present comparisons of BTER with the state-
of-the-art scalable generative models SKG [8, 28] and CL [1, 10, 11, 15] on two small
data sets available from SNAP [48]. We use SKG because it is the current choice as
the Graph 500 generator [20]. We omit details here and instead refer the reader to
the references listed above for details of the method and to [46, 45] for an in-depth
analysis and discussion of problems with SKG. The CL model has been described in
section 2.3. We treat all edges as undirected and remove any duplicate edges and
loops. The graph ca-AstroPh is a collaboration network based on 124 months of data
from the astrophysics section of the arXiv preprint server; it has 9,987 nodes and
25,973 edges. The graph soc-Epinions1 is a who-trusts-whom online social (review)
network from the Epinions website with 75,879 nodes and 405,740 edges.

The parameters of SKG are from [28]. The input to CL is the degree distribution
of the real graph and a blowup factor of β = 10 [15]. The inputs to BTER are
the degree distribution and clustering coefficients per degree (computed exactly by
counting all wedges and triangles) of the real graph and a blowup factor of β = 10.
Timings are not reported as they are negligible for all three methods.

Degree distribution. The degree distributions for the original graphs and the mod-
els are shown in Figures 5a and 5d. SKG is known to have oscillations in the degree
distribution [46, 45], and these oscillations are easily visible in Figure 5d. The os-
cillations are correctable with an appropriate addition of noise [46, 45] (not shown),
but even then SKG tends to overestimate the low-degree nodes and miss the highest
degree nodes. In contrast, both CL and BTER closely match the real data.

Clustering coefficients. The clustering coefficients per degree for the original
graphs and the models are shown in Figures 5a and 5e. The SKG graph model
has no inherent mechanism for closing triangles and creating a community structure.
Although a few triangles may close at random, they are insufficient for the SKG-
generated graph to match the clustering coefficients in the real data. The situation
for CL is similar to that for SKG—there is no reason for wedges to close. BTER, on
the other hand, provides a much closer match to the real data.

Eigenvalues of adjacency matrix. We show the top 50 leading eigenvalues (in mag-
nitude) of the adjacency matrix in Figures 5c and 5f. BTER provides a much closer
match to the real data—especially the first few eigenvalues. Under certain circum-
stances, matching the degree distribution should produce a match in eigenvalues [31].
However, based on the observation that the eigenvalues of a graph with community
structure are larger than those of the CL graph with the same degree distribution, we
conjecture that graphs with community structure require that the triangle structure
also be matched to obtain a good fit for the eigenvalues.

4.2. Large data. We demonstrate that BTER is able to fit large-scale real-
world data. We do not compare BTER to SKG because it is not possible to fit the
parameters for such large graphs. We do not compare BTER to the CL model because
we can easily explain the performance: its match in terms of the degree distribution
is nearly identical to that of BTER, and its clustering coefficients are close to zero
for the small data. The data sets are described in Table 2(a). We treat all edges as
undirected and remove any duplicate edges and loops. We obtained real-world graphs
from the Laboratory for Web Algorithms [30], which compressed the graphs using
LLP and WebGraph [7, 5]. Briefly, the networks are described as follows:

C440 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

Degree

C
ou

nt

ca−HepTh
BTER
SKG
CL

(a) Degree distribution for
ca-HepTh.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

ca−HepTh
BTER
SKG
CL

(b) Clustering coefficients for
ca-HepTh.

0 20 40
5

10

15

20

25

30

35

Eigenvalue

M
ag

ni
tu

de

ca−HepTh
BTER
SKG
CL

(c) Leading adjacency matrix
eigenvalues for ca-HepTh.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Degree

C
ou

nt

soc−Epinions1
BTER
SKG
CL

(d) Degree distribution for
soc-Epinions1.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

soc−Epinions1
BTER
SKG
CL

(e) Clustering coefficients for
soc-Epinions1.

0 20 40
0

50

100

150

200

250

Eigenvalue

M
ag

ni
tu

de

soc−Epinions1
BTER
SKG
CL

(f) Leading adjacency matrix
eigenvalues for soc-Epinions1.

Fig. 5. Comparison of CL, SKG, and BTER on small graphs.

• amazon-2008 [7, 5]: A graph describing similarity among books as reported
by the Amazon store.

• ljournal-2008 [9, 7, 5]: Nodes represent users on LiveJournal. Node x connects
to node y if x registered y as a friend.

• hollywood-2011 [7, 5]: This is a graph of actors. Two actors are joined by an
edge whenever they appear in a movie together.

• twitter-2010 [27, 7, 5]: Nodes are Twitter users, and node x links to node y
if y follows x.

• uk-union-2006-06-2007-05 (shortened to uk-union) [6, 7, 5]: Links between
Web pages on the .uk domain. We ignore the time labeling on the links.

To the best of our knowledge, uk-union is the largest publicly available graph.
The smaller graphs (amazon-2008, ljournal-2008, hollywood-2011) are those with

up to roughly 100M edges. These can be easily processed using MATLAB on an SGI
Altix UV 10 with 32 cores (4 Xeon 8-core 2.0GHz processors) and 512 GB DDR3
memory. None of the parallel capabilities of MATLAB are enabled for these studies.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C441

Table 2

Network characteristics of original and BTER-generated graphs.

Graph |V | |E| dmax davg GCC
amazon-2008 1M 4M 1,077 10 0.260
ljournal-2008 5M 50M 19,432 18 0.124
hollywood-2011 2M 114M 13,107 115 0.175
twitter-2010 40M 1,202M 2,997,487 60 0.001
uk-union 122M 4,659M 6,366,528 76 0.007

(a) Large data set properties.

Graph |V | |E| dmax davg GCC Gen. Dedup.
amazon-2008 1M 4M 1,052 10 0.253 2.27s 9.25s
ljournal-2008 5M 49M 18,510 19 0.127 33.81s 126.40s
hollywood-2011 2M 114M 11,676 115 0.180 88.54s 362.25s
twitter-2010 38M 1,135M 1,635,823 59 0.004 230s
uk-union 120M 4,405M 1,497,950 73 0.111 1350s

(b) Properties of BTER-generated graphs, including generation and edge deduplication
time.

To give a sense of the memory requirements, storing the hollywood-2011 graph as
a sparse matrix in MATLAB requires 3.4GB of storage. Each of the larger graphs
(twitter-2010, uk-union) has over 1B edges. These are processed on a Hadoop cluster
with 32 compute nodes. Each compute node has an Intel i7 930 CPU at 2.8GHz (four
physical cores, HyperThreading enabled), 12 GB of memory, and 4 2TB SATA disks.
All experiments were run using Apache Hadoop version 0.20.203.0.3 The results in
Table 2(b) were obtained using 132 map and 32 reduce tasks.

The inputs to BTER are the degree distribution and clustering coefficients by de-
gree. (We used a blowup of β = 1 for the experiments reported here.) Computing the
degree distribution is straightforward. However, for the clustering coefficients calcu-
lations, we used the sampling approach as implemented in [25] with 2000 samples per
degree, so the expected error is ε = 0.05 at a confidence level of 99.9%. Sampling was
not required for the smaller graphs, but we used it in all experiments for consistency.

BTER timing. Table 2(b) shows the details and timings for the graphs produced
by BTER. Observe the close match in the characteristics of the graphs in terms of
number of nodes, number of edges, maximum degree, average degree, and global clus-
tering coefficient. For the smaller graphs, we are able to separate the edge generation
and deduplication time. The generation time is not strictly proportional to the num-
ber of desired edges because we have to generate extra edges for Phase 1 to account
for possible duplicates (see section 3.5). The parallelism of Hadoop yields a large
advantage in terms of time. The twitter-2010 graph has 10 times more edges than
hollywood-2011, but it takes less than half the time to do the computation on the
32-node Hadoop cluster.

Degree distribution. Figure 6 illustrates the match between the real data and the
BTER graph. BTER cannot easily match discontinuities in the degree distribution
because of the randomness in creating edges. The issue is that nodes generally do not
get exactly the desired degree; in the realization of the graph, observed degrees may
deviate by one or two from the expected degree. For a smooth degree distribution,
neighboring degrees cancel the effect of one another. For discontinuous distributions,

3http://hadoop.apache.org/

http://hadoop.apache.org/

C442 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Degree

C
ou

nt

amazon−2008
BTER

(a) amazon-2008.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Degree

C
ou

nt

ljournal−2008
BTER

(b) ljournal-2008.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Degree

C
ou

nt

hollywood−2011
BTER

(c) hollywood-2011.

(d) twitter-2010. (e) uk-union.

Fig. 6. Degree distributions of original and BTER-generated graphs.

the BTER degree distribution is a “smoothed” version. This is evident, for instance, in
the amazon-2008 data, where we can see a smoothing effect on the sharp discontinuity
near degree 10.

Clustering coefficients. BTER’s strength is its ability to match clustering co-
efficients and therefore create community structure. Most degree distributions are
heavy-tailed and have a relatively consistent structure. The same is not true for clus-
tering coefficients. Different profiles can potentially lead to graphs with fundamentally
different structures. Figure 7 shows the clustering coefficients of the real data and the
BTER-generated graphs. There is a very close match.

5. Proposed benchmark parameters and scalability. Thus far we have
considered how BTER can be used to match real-world data. For benchmarking
purposes, where there is no specific graph to be matched, “ideal” profiles for degree
distribution and clustering coefficient by degree are required. In this section, we
propose some possibilities, noting that these are tunable for various testing scenarios,
i.e., specifying an average degree, a maximum clustering coefficient, etc. Generating
an artificial degree distribution can be problematic. For instance, using a straight

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C443

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

amazon−2008
BTER

(a) amazon-2008.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

ljournal−2008
BTER

(b) ljournal-2008.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

hollywood−2011
BTER

(c) hollywood-2011.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

twitter−2010
BTER

(d) twitter-2010.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

uk−union
BTER

(e) uk-union.

Fig. 7. Clustering coefficients of original and BTER-generated graphs.

power law (PL) distribution can lead to impossible situations, such as choosing a
degree greater than the number of nodes. This necessitates a discrete distribution,
which engenders its own problems. After proposing methods for working around these
problems, we use the proposed benchmark in a scalability study for the MapReduce
implementation of BTER.

5.1. Idealized degree distribution. It has been hypothesized that degree dis-
tribution of real-world networks follows a PL degree distribution, i.e.,

nd ∝ d−γ ,

for some parameter γ [2]. However, our observation is that PL distributions are
difficult to use as a model—a point that is discussed in more detail below. It has been
suggested that PLs are not necessarily the best descriptors for real-world networks [43,
4]. Finally, proving (in a statistical sense) that a single observed degree distribution
is PL is difficult [13].

For benchmarking purposes, our goal is to specify an ideal average degree, d̄, and
an absolute bound on maximum degree, d∗. Let f(d) define the desired proportion-

C444 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

ality of degree d, e.g., f(d) = d−γ for a PL distribution. We then create a discrete
distribution on d = 1, . . . , d∗ as

Pr (D = d) =
f(d)∑d∗

d′=1 f(d
′)
.

Ideally, the average degree is equal to d̄, and the probability of having degree d∗ is
sufficiently small, i.e.,

d̄ =

d∗∑
d=1

d · f(d) and Pr (D = d∗) < εtol,

where εtol is small enough such that n · εtol
 1 (where n is the number of nodes).
For the power law distribution, it can be difficult to find a value for γ that yields a
high enough average degree and a low enough probability of choosing d∗. Hence, we
propose instead a generalized log-normal (GLN) distribution, i.e.,

nd ∝ exp

[
−
(
log d

α

)δ
]
,

for some parameters α and δ. The supplementary material includes example degree
distributions that vary α and δ. The shape of the distribution is typical of the real-
world graphs shown in section 4.

We consider two scenarios, both with n = 107 nodes. We do a parameter search
on α and δ (fminsearch in MATLAB) to locate the optimal parameters. A function
degdist param search that finds the optimal parameters for either discrete GLN
(DGLN) or discrete PL (DPL) for user-specified values of davg and dmax is included
in the reference code to be released at a future date.

Scenario 1 for degree distribution fitting. In the first scenario, the targets are
d̄ = 16 and d∗ = 106. For DPL, the optimal parameter is γ = 1.911 with davg = 16
and Pr (D = d∗) = 1.97 × 10−12. For DGLN, the optimal parameters are α = 1.988
and δ = 2.079 with davg = 16 and Pr (D = d∗) = 4.14×10−26. Realizations of the two
distributions are pictured in Figure 8a. For this scenario, both degree distributions
are reasonable in that there is no sharp dropoff as we get close to the maximum
allowable degree, d∗.

Scenario 2 for degree distribution fitting. In the second scenario, the targets are
d̄ = 64 and d∗ = 105. For PL, the optimal parameter is γ = 1.668 with davg = 64
but Pr (D = d∗) = 2.16× 10−9 (fairly large). For DGLN, the optimal parameters are
α = 2.171 and δ = 1.877 with davg = 64 and Pr (D = d∗) = 8.35×10−12. Realizations
of the two distributions are pictured in Figure 8b. In this scenario, the problem with
PL becomes apparent—near d∗, there are still many degrees with multiple nodes so
that the cutoff is extremely abrupt. In comparison, DGLN fades more naturally to
the desired maximum degree.

5.2. Idealized clustering coefficients. As there is no definitive structure to
clustering coefficients, we propose a simple parameterized curve that has some simi-
larity to real data observations.

Let {nd } define the specified degree distribution, and let dmax be the maximum
degree such that nd > 0. We define c̄d, the mean value for cd, as

c̄d = cmax exp(−(d− 1) · ξ) for d ≥ 2,

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C445

(a) Scenario 1: d̄ = 16 and
d∗ = 106.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

DPL
DGLN

(b) Scenario 2: d̄ = 64 and
d∗ = 105.

Fig. 8. Example degree distributions from DPL and DGLN for n = 107 nodes.

where cmax and ξ are parameters. If cmax is specified, then a simple parameter search
can be used to fit ξ to a target global clustering coefficient; code to fit the data is
included in the reference code. The final values for { cd } are selected as

cd ∼ N (c̄d,min{10−2, c̄d/2}).

The randomness could, of course, be omitted.

5.3. Example graphs. We generate two example graphs per the scenarios be-
low. Table 3 lists the network characteristics and Figure 9 shows the target and
BTER-generated degree distributions and clustering coefficients.

Table 3

Network characteristics of BTER-generated graphs for benchmarking.

Graph |V | |E| dmax davg GCC Gen. Dedup.
Scenario 1 1M 35M 28,643 72 0.406 35.11s 117.18s
Scenario 2 1M 8M 2,594 17 0.104 5.07s 20.66s

Scenario 1. For the first setup, we selected d̄ = 75 and d∗ = 100,000 to define the
degree distribution. The parameter search selected α = 2.14 and δ = 1.83. For the
clustering coefficients, we set cmax = 0.9 and a target GCC of 0.15. The parameter
search selected ξ = 3.59× 10−4 for defining the clustering coefficient profile.

Scenario 2. For the second setup, we selected d̄ = 16 and d∗ = 10,000 to define
the degree distribution. The parameter search selected α = 1.98 and δ = 2.08. For
the clustering coefficients, we set cmax = 0.5 and a target GCC of 0.10. The parameter
search selected ξ = 0.01 for defining the clustering coefficient profile.

5.4. Scalability test. We use the DGLN distribution to create target distribu-
tions that define a series of graphs of different sizes but similar community structure.
From these, we generate example graphs with our Hadoop MapReduce implementa-
tion of BTER and demonstrate scalability of our code.

Table 4 describes characteristics of the test graphs. We selected d̄ = 32 for all
graphs and maintained d∗ proportional to

√|V |, a relation that we often observe in

C446 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Degree

C
ou

nt

Ideal−1
BTER

(a) Degree distribution for
Scenario 1.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Degree
C

ou
nt

Ideal−2
BTER

(b) Degree distribution for
Scenario 2.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Ideal−1
BTER

(c) Clustering coefficients for
Scenario 1.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Ideal−2
BTER

(d) Clustering coefficients for
Scenario 2.

Fig. 9. Target distributions and results of BTER-generated graphs.

social network graphs. The last two columns of the table list the number of generated
(Phase 1 and 2) and unique edges measured from full graphs realized by BTER.

Target degree distributions were created using the formulas and functions pre-
sented in section 5.1. Optimal parameters α and δ were computed using MATLAB
function degdist param search (part of the reference code). The function takes d̄
and d∗ as inputs, plus the Pr (D = d∗) which we set to 0.001/|V |. Then we com-
puted a DGLN from α, δ, and the number of nodes |V | listed in the second column
of Table 4. We created clustering coefficient distributions as in section 5.2, setting
cmax = 0.5 and GCC = 0.15 for all graphs.

The MapReduce implementation of BTER was executed on a 32-node cluster
running Apache Hadoop version 0.20.203.0. Each compute node contains a quad-core
processor and four hard drives configured to run independently (no RAID striping).
Hadoop was configured for a maximum of 128 simultaneous map tasks, effectively
pairing each core with a hard drive for maximum I/O throughput. A MapReduce job
can therefore launch up to 128 mappers in parallel. Hadoop was also configured for a

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C447

Table 4

Graph characteristics for testing BTER scalability.

Graph |V | d∗ d̄ Gen |E| Unique |E|
1 1M 50k 32 25M 16M
2 2M 70k 32 50M 32M
3 4M 100k 32 101M 64M
4 8M 140k 32 201M 128M
5 16M 200k 32 403M 256M
6 32M 280k 32 808M 512M
7 64M 400k 32 1,614M 1,024M
8 128M 570k 32 3,233M 2,047M
9 256M 800k 32 6,467M 4,096M

maximum of 128 simultaneous reduce tasks. BTER uses the reduce phase to remove
duplicate edges, so we expect this to compete for machine resources with BTER map
tasks that generate Phase 1 and 2 edges.

Figure 10a renders the data in Table 4, showing how the computational work
varies across test graphs. To assess scalability in the weak sense, we set the workload
of each map task in BTER to be 1 million edges; hence, Graph 1 executes with 1
map task and Graph 9 executes with 256. The number of reduce tasks was set to the
number of map tasks, up to the configured Hadoop limit of 128.

Figure 10b plots BTER execution time (wall clock time) as a function of the
number of vertices requested. Perfect scalability would appear as a horizontal line.
We observe excellent scalability up to 32 million vertices (32 map tasks), and then a
significant dropoff in parallel performance. However, map task scalability is excellent
through 128 tasks, the full capacity of the cluster. Hence, BTER edge generation in
the map phase is fully scalable to the available hardware. Removal of duplicate edges
in the reduce phase is less scalable. Here the edges must be sorted on the map task
node, shuffled across the network to reduce task nodes, and merged at the reducers.
Close examination of Hadoop log files and network traffic suggests that the reduce
phase suffers from bandwidth limitations during the shuffle and from spillover to disk
during the merge. We conjecture that deduplication scalability could be improved
on a cluster with larger network bandwidth and more physical memory per compute
node.

We also show an example of the generated graph in Figure 11. This is for Graph
9 with 256M vertices and 4B edges. We give log-binned results. The BTER model
is fairly close to the intended distributions for both the degree distribution and the
clustering coefficient by degree.

6. Conclusions and future work. This paper demonstrates that the BTER
generative model is useful for modeling massive networks, especially compared with
other scalable models. We provide a detailed algorithm along with analysis explaining
the workings of the method. The original paper on BTER [44] provided none of the
implementation details and, in fact, did not directly use the clustering coefficient
data but rather estimated it via a function. Here we give precise details on the
implementation, which is nontrivial due to issues such as repeat edges. We are able
to build a model of a graph with 120M nodes and 4.4B edges in less than 25 minutes
on a 32-node Hadoop cluster.

The development of a realistic graph model is an important step in developing
effective “null” models that nonetheless share the properties of real-world networks.
Such models will be useful in detecting anomalies, statistical sampling, and community

C448 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

0.5 1 1.5 2 2.5

x 10
8

0

1

2

3

4

5

6

7
x 10

9

Vertices

E
dg

es

Total edges
Unique edges

(a) Test graph sizes.

10
6

10
7

10
8

0

200

400

600

800

1000

Vertices

E
xe

cu
tio

n
T

im
e

Total job
Map tasks

(b) BTER execution time in
seconds.

Fig. 10. Scalability of BTER MapReduce implementation.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Target
BTER

(a) Degree distribution
(log-binned).

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Target
BTER

(b) Clustering coefficients
(log-binned).

Fig. 11. Example target and actual degree distributions for 256M nodes using proposed idealized
distributions.

detection. For example, the BTER model does not have larger communities beyond
the affinity blocks, whereas we might expect that real-world graphs have a richer
structure such as a hierarchy or other complex behavior.

The proposed BTER model, along with the proposed degree and clustering coef-
ficient distributions, may also boost benchmarking efforts in graph processing. The
proposed degree distributions capture the essence of degree distributions that we see
in practice and generate realistic distributions even at large scales (whereas PL has
a reputation of generating a few degrees that are much larger than observed in prac-
tice). Moreover, the proposed distribution allows us to modify both the average and
the maximum degree, which is critical for benchmarking. The proposed clustering
coefficient curves implicitly embed triangle structure into the graphs, which is a crit-
ical feature that distinguishes real graphs from arbitrary sparse graphs. Finally, the
proposed generation algorithm scales to extremely large graphs because it generates
edges in parallel.

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C449

Of course, we should list the limitations of the BTER model. First and foremost,
we consider only simple graphs. More complex models would be needed for directed
and/or weighted graphs. For instance, even capturing the degree distributions of a
directed graph is a challenge [15]. We also ignore complex community structure, such
as bipartite or near-bipartite community structure, as well as hierarchical structure,
which has been observed in real-world applications [40, 12]. Such structure could
potentially be incorporated by adjusting the way that affinity blocks are linked. Cur-
rently, affinity blocks link only within themselves and then randomly to other nodes
in the graphs. To simulate bipartite structure, the affinity blocks could be paired.
To generate hierarchical structure, the affinity blocks could be arranged in that way,
with excess degree being biased towards blocks that are closer in the hierarchy. We
do not incorporate node and edge types which would be relevant, for instance, in
an e-commerce graph that represents users and items, connected via purchases and
ratings of items by users. Finally, although we can generate edges in a streaming
fashion, the BTER model has no real concept of evolving parameters in time. All of
these issues are topics for future studies.

Appendix A. Coupon collector derivation. Consider a universe U of
objects/coupons, and suppose we pick objects uniformly at random with replace-
ment from U . The following theorem proves the bound used in (3.1), when U is the
set of possible pairs in an affinity block (so |U | = (

nb

2

)
). This is a simple take on the

standard coupon collector problem, where we wish to pick up all distinct coupons.
(We follow the analysis of section 3.6.1 in [36].)

Theorem A.1. For a given ρ ∈ (0, 1), the expected number of independent draws
required to select ρ|U | distinct coupons from U is |U | ln(1/(1− ρ)) +O(1).

Proof. For convenience, we assume that ρ|U | is an integer. Consider a sequence of
draws. Let Xi (for integer 0 ≤ i < ρ|U |) be the random variable denoting the number
of draws required to get one more (distinct) coupon after i distinct coupons have been
collected. Observe that the quantity of interest is E[

∑
i<ρ|U| Xi], which by linearity

of expectation is
∑

i<ρ|U| E[Xi]. (The usual coupon collector analyses consider this

sum for ρ = 1.)
When i distinct coupons have already been collected, the probability that a single

draw gives a new coupon is exactly 1 − i/|U |. Think of this as probability of “fail-
ure.” The number of draws required for a success (new coupon) follows a geometric
distribution (Chap VI.8 of [17]) and the mean of this is 1/(1− i/|U |) = |U |/(|U | − i).
Using this bound, the expected total number of draws can be expressed as follows:

∑
i<ρ|U|

E[Xi] =
∑

i<ρ|U|

|U |
|U | − i

= |U |
[∑

i≤|U|

1

i
−

∑
i≤(1−ρ)|U|

1

i

]

= |U |
[
ln |U | − ln((1 − ρ)|U |) +O(1/|U |)

]
= |U | ln(1/(1− ρ)) +O(1).

(We use the standard bound for the Harmonic sum,
∑

i≤r 1/i = ln r + γ + O(1/r),
where γ is the Euler–Mascheroni constant.)

C450 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

REFERENCES

[1] W. Aiello, F. Chung, and L. Lu, A random graph model for power law graphs, Exp. Math.,
10 (2001), pp. 53–66, http://projecteuclid.org/euclid.em/999188420.

[2] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286
(1999), pp. 509–512, http://dx.doi.org/10.1126/science.286.5439.509.

[3] A. Barrat and M. Weigt, On the properties of small-world network models, Eur. Phys. J. B
Condens. Matter, 13 (2000), pp. 547–560, http://dx.doi.org/10.1007/s100510050067.

[4] Z. Bi, C. Faloutsos, and F. Korn, The “DGX” distribution for mining massive, skewed
data, in KDD ’01: Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, ACM, New York, 2001, pp. 17–26,
http://dx.doi.org/10.1145/502512.502521.

[5] P. Boldi, M. Rosa, M. Santini, and S. Vigna, Layered label propagation: A multiresolution
coordinate-free ordering for compressing social networks, in WWW’11: Proceedings of the
20th International World Wide Web Conference, ACM, New York, 2011, pp. 587–596,
http://dx.doi.org/10.1145/1963405.1963488.

[6] P. Boldi, M. Santini, and S. Vigna, A large time-aware graph, ACM SIGIR Forum, 42
(2008), pp. 33–38, http://dx.doi.org/10.1145/1480506.1480511.

[7] P. Boldi and S. Vigna, The webgraph framework I: Compression techniques, in WWW’04:
Proceedings of the 13th International World Wide Web Conference, ACM, New York, 2004,
pp. 595–602, http://dx.doi.org/10.1145/988672.988752.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining,
in SDM04: Proceedings of the 2004 SIAM International Conference on Data Mining, SIAM,
Philadelphia, 2004, pp. 442–446, http://dx.doi.org/10.1137/1.9781611972740.43.

[9] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Ragha-

van, On compressing social networks, in KDD ’09: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, New York,
2009, pp. 219–228, http://dx.doi.org/10.1145/1557019.1557049.

[10] F. Chung and L. Lu, The average distances in random graphs with given expected degrees,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 15879–15882, http://dx.doi.org/10.1073/pnas.
252631999.

[11] F. Chung and L. Lu, Connected components in random graphs with given degree se-
quences, Ann. Combin., 6 (2002), pp. 125–145, http://www.combinatorics.net/new/
Annals/Abstract/6 2 125.aspx.

[12] A. Clauset, C. Moore, and M. Newman, Hierarchical structure and the prediction of missing
links in networks, Nature, 453 (2008), pp. 98–101, http://dx.doi.org/10.1038/nature06830.

[13] A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law distributions in empirical data,
SIAM Rev., 51 (2009), pp. 661–703, http://dx.doi.org/10.1137/070710111.

[14] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vanó, S. Gómez-Villamor, N. Martnez-

Bazán, and J. Larriba-Pey, Survey of graph database performance on the HPC scalable
graph analysis benchmark, in Web-Age Information Management, H. Shen, J. Pei, M. Özsu,
L. Zou, J. Lu, T.-W. Ling, G. Yu, Y. Zhuang, and J. Shao, eds., Lecture Notes in Com-
put. Sci. 6185, Springer, Berlin, Heidelberg, 2010, pp. 37–48, http://dx.doi.org/10.1007/
978-3-642-16720-1 4.

[15] N. Durak, T. G. Kolda, A. Pinar, and C. Seshadhri, A scalable null model for directed
graphs matching all degree distributions: In, out, and reciprocal, in Proceedings of the
2nd IEEE Workshop on Network Science, IEEE Press, Piscataway, NJ, 2013, pp. 23–30,
http://arxiv.org/abs/1210.5288.

[16] P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató
Int. Közl, 5 (1960), pp. 17–61, http://www.math-inst.hu/∼p erdos/1960-10.pdf.

[17] W. Feller, An Introduction to Probability Theory and Applications: Vol. I, 3rd ed., John
Wiley and Sons, New York, 1968.

[18] M. Girvan and M. E. J. Newman, Community structure in social and biological networks,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 7821–7826, http://dx.doi.org/10.1073/pnas.
122653799.

[19] D. F. Gleich and A. B. Owen, Moment-based estimation of stochastic Kronecker graph pa-
rameters, Internet Math., 8 (2012), pp. 232–256, http://dx.doi.org/10.1080/15427951.2012.
680824.

[20] Graph 500 Benchmark, http://www.graph500.org/specifications(accessed April 2, 2014).
[21] W. Guo and S. Kraines, A random network generator with finely tunable clustering coeffi-

cient for small-world social networks, in CASON ’09: International Conference on Compu-
tational Aspects of Social Networks, IEEE Press, Piscataway, NJ, 2009, pp. 10–17, http://
dx.doi.org/10.1109/CASoN.2009.13.

http://projecteuclid.org/euclid.em/999188420
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1007/s100510050067
http://dx.doi.org/10.1145/502512.502521
http://dx.doi.org/10.1145/1963405.1963488
http://dx.doi.org/10.1145/1480506.1480511
http://dx.doi.org/10.1145/988672.988752
http://dx.doi.org/10.1137/1.9781611972740.43
http://dx.doi.org/10.1145/1557019.1557049
http://dx.doi.org/10.1073/pnas.252631999
http://dx.doi.org/10.1073/pnas.252631999
http://www.combinatorics.net/new/Annals/Abstract/6_2_125.aspx
http://www.combinatorics.net/new/Annals/Abstract/6_2_125.aspx
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1007/978-3-642-16720-1_4
http://dx.doi.org/10.1007/978-3-642-16720-1_4
http://arxiv.org/abs/1210.5288
http://www.math-inst.hu/~p_erdos/1960-10.pdf
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1080/15427951.2012.680824
http://dx.doi.org/10.1080/15427951.2012.680824
http://www.graph500.org/specifications
http://dx.doi.org/10.1109/CASoN.2009.13
http://dx.doi.org/10.1109/CASoN.2009.13

A SCALABLE GRAPH MODEL WITH COMMUNITY STRUCTURE C451

[22] R. Gupta, T. Roughgarden, and C. Seshadhri, Decompositions of triangle-dense graphs,
in ITCS’14: Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ACM, New York, 2014, pp. 471–482, http://dx.doi.org/10.1145/2554797.2554840.

[23] A. Gutfraind, L. A. Meyers, and I. Safro,Multiscale Network Generation, preprint, http://
arxiv.org/abs/1207.4266, 2012.

[24] J. Kepner, The Kronecker theory of power law graphs, in Graph Algorithms in the Language
of Linear Algebra, J. Kepner and J. Gilbert, eds., SIAM, Philadelphia, 2011, pp. 205–240.

[25] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, Counting triangles in
massive graphs with MapReduce, SIAM J. Sci. Comput., to appear.

[26] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal,
Stochastic models for the web graph, in Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, IEEE Press, Piscataway, NJ, 2000, pp. 57–65, http://
dx.doi.org/10.1109/SFCS.2000.892065.

[27] H. Kwak, C. Lee, H. Park, and S. Moon, What is Twitter, a social network or a news media?,
in WWW ’10: Proceedings of the 19th International World Wide Web Conference, ACM,
New York, 2010, pp. 591–600, http://dx.doi.org/10.1145/1772690.1772751.

[28] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, Kro-
necker graphs: An approach to modeling networks, J. Mach. Learn. Res., 11 (2010),
pp. 985–1042, http://jmlr.csail.mit.edu/papers/v11/leskovec10a.html.

[29] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution: Densification and shrinking
diameters, ACMTrans. Knowledge Discovery Data, 1 (2007), 2, http://dx.doi.org/10.1145/
1217299.1217301.

[30] LWA: Laboratory for Web Algorithms, http://law.di.unimi.it/datasets.php (accessed April 2,
2014).

[31] M. Mihail and C. Papadimitriou, On the eigenvalue power law, in RANDOM 2002: Pro-
ceedings of Randomization and Approximation Techniques in Computer Science, Lecture
Notes in Comput. Sci. 2483, Springer, Berlin, Heidelberg, 2002, pp. 254–262, http://dx.
doi.org/10.1007/3-540-45726-7 20.

[32] B. Miller, N. Bliss, and P. Wolfe, Subgraph detection using eigenvector L1 norms, in NIPS
2010: Advances in Neural Information Processing Systems, 2010, pp. 1633–1641, http://
books.nips.cc/papers/files/nips23/NIPS2010 0954.pdf.

[33] B. Miller, L. Stephens, and N. Bliss, Goodness-of-fit statistics for anomaly detection in
Chung-Lu random graphs, in ICASSP 2012: IEEE International Conference on Acoustics,
Speech and Signal Processing, IEEE Press, Piscataway, NJ, 2012, pp. 3265–3268, http://
dx.doi.org/10.1109/ICASSP.2012.6288612.

[34] D. Mir and R. N. Wright, A differentially private estimator for the stochastic Kronecker
graph model, in EDBT-ICDT ’12: Proceedings of the 2012 Joint EDBT/ICDT Workshops,
ACM, New York, 2012, pp. 167–176, http://dx.doi.org/10.1145/2320765.2320818.

[35] S. Moreno, S. Kirshner, J. Neville, and S. V. N. Vishwanathan, Tied Kronecker product
graph models to capture variance in network populations, in Proceedings of the 48th Annual
Allerton Conference on Communication, Control, and Computing, 2010, pp. 1137–1144,
http://dx.doi.org/10.1109/ALLERTON.2010.5707038.

[36] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[37] M. Newman, Component sizes in networks with arbitrary degree distributions, Phys. Rev. E,
76 (2007), 045101, http://dx.doi.org/10.1103/PhysRevE.76.045101.

[38] M. Newman, D. Watts, and S. Strogatz, Random graph models of social networks, Proc.
Natl. Acad. Sci. USA, 99 (2002), pp. 2566–2572, http://www.pnas.org/content/99/suppl
1/2566.full.

[39] M. E. J. Newman, Properties of highly clustered networks, Phys. Rev. E, 68 (2003), 026121,
http://dx.doi.org/10.1103/PhysRevE.68.026121.

[40] M. E. J. Newman, Finding community structure in networks using the eigenvectors of matri-
ces, Phys. Rev. E, 74 (2006), 036104, http://dx.doi.org/10.1103/PhysRevE.74.036104.

[41] A. Pinar, C. Seshadhri, and T. G. Kolda, The similarity between stochastic Kronecker
and Chung-Lu graph models, in Proceedings of the 2012 SIAM International Conference
on Data Mining, SIAM, Philadelphia, 2012, pp. 1071–1082, http://dx.doi.org/10.1137/1.
9781611972825.92.

[42] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao, Measurement-calibrated
graph models for social network experiments, in WWW ’10: Proceedings of the 19th In-
ternational World Wide Web Conference, 2010, pp. 861–870, http://dx.doi.org/10.1145/
1772690.1772778.

[43] A. Sala, S. Gaito, G. P. Rossi, H. Zheng, and B. Y. Zhao, Revisiting Degree Distribution
Models for Social Graph Analysis, preprint, arXiv:1108.0027, 2011.

http://dx.doi.org/10.1145/2554797.2554840
http://arxiv.org/abs/1207.4266
http://arxiv.org/abs/1207.4266
http://dx.doi.org/10.1109/SFCS.2000.892065
http://dx.doi.org/10.1109/SFCS.2000.892065
http://dx.doi.org/10.1145/1772690.1772751
http://jmlr.csail.mit.edu/papers/v11/leskovec10a.html
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1145/1217299.1217301
http://law.di.unimi.it/datasets.php
http://dx.doi.org/10.1007/3-540-45726-7_20
http://dx.doi.org/10.1007/3-540-45726-7_20
http://books.nips.cc/papers/files/nips23/NIPS2010_0954.pdf
http://books.nips.cc/papers/files/nips23/NIPS2010_0954.pdf
http://dx.doi.org/10.1109/ICASSP.2012.6288612
http://dx.doi.org/10.1109/ICASSP.2012.6288612
http://dx.doi.org/10.1145/2320765.2320818
http://dx.doi.org/10.1109/ALLERTON.2010.5707038
http://dx.doi.org/10.1103/PhysRevE.76.045101
http://www.pnas.org/content/99/suppl_1/2566.full
http://www.pnas.org/content/99/suppl_1/2566.full
http://dx.doi.org/10.1103/PhysRevE.68.026121
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1137/1.9781611972825.92
http://dx.doi.org/10.1137/1.9781611972825.92
http://dx.doi.org/10.1145/1772690.1772778
http://dx.doi.org/10.1145/1772690.1772778

C452 T. G. KOLDA, A. PINAR, T. PLANTENGA, AND C. SESHADHRI

[44] C. Seshadhri, T. G. Kolda, and A. Pinar, Community structure and scale-free collec-
tions of Erdös-Rényi graphs, Phys. Rev. E, 85 (2012), 056109, http://dx.doi.org/10.1103/
PhysRevE.85.056109.

[45] C. Seshadhri, A. Pinar, and T. G. Kolda, An in-depth study of stochastic Kronecker graphs,
in ICDM 2011: Proceedings of the 2011 IEEE International Conference on Data Mining,
IEEE Press, Piscataway, NJ, 2011, pp. 587–596, http://dx.doi.org/10.1109/ICDM.2011.
23.

[46] C. Seshadhri, A. Pinar, and T. G. Kolda, An in-depth analysis of stochastic Kronecker
graphs, J. ACM, 60 (2013), 13, http://dx.doi.org/10.1145/2450142.2450149.

[47] C. Seshadhri, A. Pinar, and T. G. Kolda, Triadic measures on graphs: The power of wedge
sampling, in SDM13: Proceedings of the 2013 SIAM International Conference on Data
Mining, SIAM, Philadelphia, 2013, pp. 10–18, http://dx.doi.org/10.1137/1.9781611972832.
2.

[48] SNAP: Stanford Network Analysis Project, http://snap.stanford.edu/ (accessed April 2, 2014).
[49] J. C. Vivar and D. Banks, Models for networks: A cross-disciplinary science, Wiley Inter-

disciplinary Reviews: Computational Statistics, 4 (2012), pp. 13–27, http://dx.doi.org/10.
1002/wics.184.

[50] D. Watts and S. Strogatz, Collective dynamics of ‘small-world’ networks, Nature, 393
(1998), pp. 440–442, http://dx.doi.org/10.1038/30918.

http://dx.doi.org/10.1103/PhysRevE.85.056109
http://dx.doi.org/10.1103/PhysRevE.85.056109
http://dx.doi.org/10.1109/ICDM.2011.23
http://dx.doi.org/10.1109/ICDM.2011.23
http://dx.doi.org/10.1145/2450142.2450149
http://dx.doi.org/10.1137/1.9781611972832.2
http://dx.doi.org/10.1137/1.9781611972832.2
http://snap.stanford.edu/
http://dx.doi.org/10.1002/wics.184
http://dx.doi.org/10.1002/wics.184
http://dx.doi.org/10.1038/30918

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

