
Efficiently Computing Tensor Eigenvalues on a GPU

Grey Ballard
UC Berkeley

Computer Science Department
Berkeley, CA

ballard@cs.berkeley.edu

Tamara Kolda and Todd Plantenga
Sandia National Laboratories

Livermore, CA
{tgkolda,tplante}@sandia.gov

Abstract—The tensor eigenproblem has many important
applications, generating both mathematical and application-
specific interest in the properties of tensor eigenpairs and
methods for computing them. A tensor is an m-way array,
generalizing the concept of a matrix (a 2-way array). Kolda
and Mayo [1] have recently introduced a generalization of
the matrix power method for computing real-valued tensor
eigenpairs of symmetric tensors. In this work, we present an
efficient implementation of their algorithm, exploiting symme-
try in order to save storage, data movement, and computation.
For an application involving repeatedly solving the tensor
eigenproblem for many small tensors, we describe how a GPU
can be used to accelerate the computations. On an NVIDIA
Tesla C 2050 (Fermi) GPU, we achieve 318 Gflops/s (31% of
theoretical peak performance in single precision) on our test
data set.

Keywords-tensors; tensor eigenvalues; GPU computing

I. INTRODUCTION

The tensor eigenproblem has many important applications,
including blind source separation [2], molecular conforma-
tion [3], and magnetic resonance imaging [4]–[6], and both
mathematical and application-specific communities have
taken recent interest in the properties of tensor eigenpairs as
well as methods for computing them. A tensor is an m-way
array, generalizing the notion of a matrix (a 2-way array).
In this work, we focus on an efficient implementation of the
shifted symmetric higher-order power method (SS-HOPM)
for computing real-valued eigenpairs of symmetric tensors.
This method was introduced by Kolda and Mayo [1] and is
a generalization of the matrix power method.

The main motivating application for this work involves
detection of nerve fibers in the brain from diffusion-weighted
magnetic resonance imaging data. In this application, data is
gathered for millions of cubic millimeter-sized voxels. De-
termining the number and directions of nerve fiber bundles
within each voxel requires solving a small tensor eigenvalue
problem. Because each voxel can be resolved independently,
the computations are amenable to parallelism, and we focus
our implementation on a graphics processing unit (GPU)
using the Compute Unified Device Architecture (CUDA)
programming framework.

We review the definition of the tensor eigenproblem as
well as the SS-HOPM algorithm from [1] in Section II. All

of the tensors discussed here are symmetric, and exploiting
symmetry is the foremost sequential optimization we use to
gain performance. Symmetric matrices can be stored in half
the space and symmetric matrix computations often require
only half the flops of their nonsymmetric counterparts; ex-
ploiting symmetry in tensors saves storage and computation
by much larger factors. In Section III we discuss a symmetric
tensor storage format and how this compressed format is
used in the main computational kernels of SS-HOPM.

Instead of attempting to write an algorithm that offers high
parallel performance for computing eigenpairs of tensors of
general order and dimension, we focus the GPU implemen-
tation on small tensors, as in our motivating application.
Because of the inherent parallelism in the problem, we
can run many independent threads concurrently on the
hardware, and we facilitate efficiency of each thread with
careful memory management. We describe the motivating
application in Section IV and give the details and results of
our implementation in Section V.

The main contributions of this work are (1) the introduc-
tion of a symmetric storage format that reduces computation,
memory use, and data movement by factors of m! for m-
way tensors, and (2) a parallel implementation of SS-HOPM
that achieves up to 318 Gflops/s in single precision on an
NVIDIA Tesla C 2050 (Fermi) GPU (31% of theoretical
peak). While the implementation is tailored to a specific ap-
plication, we believe the approach will be widely applicable
to high performance computations with symmetric tensors.

II. SYMMETRIC TENSORS AND TENSOR EIGENPAIRS

Following the notation and terminology from [7], a tensor
of order m is a multiway array whose entries can be indexed
by m numbers. Each of the m numbers indexes a mode,
and the range of each index is the dimension of the mode.
For example, a matrix is an order-2 tensor whose modes are
rows and columns. Let R[m,n] be the set of real-valued order-
m tensors where each mode has dimension n; for example,
A ∈ R[4,3] means that A is a 3×3×3×3 real-valued tensor.
We formally introduce the notion of a symmetric tensor
which is invariant under any permutation of its indices.

Definition 1 (Symmetric [8]): A tensor A ∈ R[m,n] is



symmetric if
aiπ(1)···iπ(m) = ai1···im

for all i1, . . . , im ∈ {1, . . . , n} and π ∈ Πm where Πm is
the set of permutations of the set {1, . . . ,m}.

For example, if A ∈ R[3,2], then entries of A are indexed
by three numbers, each of which are in the set {1, 2}. If A

is symmetric, then a112 = a121 = a211 and a122 = a212 =
a221.

The main computational kernels in SS-HOPM are in-
stances of the following definition of symmetric tensor-
vector multiply.

Definition 2 (Symmetric tensor-vector multiply [1]):
Let A ∈ R[m,n] be symmetric and x ∈ Rn. Then for
0 ≤ p ≤ m − 1, the (m − p)-times product of the tensor
A with the vector x is denoted by Axm−p ∈ R[p,n] with
entries defined by

(Axm−p)i1···ip =
∑

ip+1,...,im

ai1···imxip+1 · · ·xim . (1)

Note that there is ambiguity in defining a tensor times the
same vector in some subset of modes, but due to symmetry
the choice of indexing yields the same result as any other
valid definition. The result of a symmetric tensor-vector
multiply is also a symmetric tensor.1

We recall the definition of a tensor eigenpair used in [1],
which is relevant to our target application. There are other
definitions of eigenvalues and eigenvectors in the literature,
but the relationships between the definitions and the many
interesting properties of tensor eigenvalues are beyond the
scope of this work.

Definition 3 (Symmetric tensor eigenpair [1]): Assume
that A is symmetric. Then λ ∈ C is an eigenvalue of A if
there exists x ∈ Cn such that

Axm−1 = λx and ‖x‖2 = 1. (2)

The vector x is the corresponding eigenvector, and (λ,x) is
called an eigenpair.

Unlike in the matrix case, not all eigenpairs of a sym-
metric tensor are real-valued (i.e., both the eigenvalue and
the eigenvector are simultaneously real-valued), though there
always exist at least two real-valued eigenpairs for a real-
valued symmetric tensor. The eigenvectors of a symmetric
tensor are also not orthogonal in general. If the symmetric
tensor is of order m and dimension n, then there are
(m−1)n−1

m−2 distinct complex eigenpairs [9].
In Figure 1, we present the shifted symmetric higher-

order power method (SS-HOPM) [1] for finding real-valued
eigenpairs. This algorithm is a generalization of the matrix
power method where the operation Axm−1 generalizes the

1To see why, permute the indices of the resulting tensor (i1 · · · ip) on
the left hand side of Equation 1. This corresponds on the right hand side
to a permutation of the first p indices of the tensor entries ai1···im in the
summation. Due to symmetry, the values of tensor entries remain invariant.

1: repeat
2: if α ≥ 0 then
3: x̂k+1 ← Axm−1

k + αxk

4: else
5: x̂k+1 ← −(Axm−1

k + αxk)
6: end if
7: xk+1 ← x̂k+1/‖x̂k+1‖
8: λk+1 ← Axm

k+1
9: until λ converges

Figure 1. Pseudocode for SS-HOPM [1]. Here A ∈ R[m,n] is symmetric,
α ∈ R, and x0 ∈ Rn with ‖x0‖ = 1.

matrix-vector product and Axm generalizes the Rayleigh
quotient for a unit vector. SS-HOPM includes the shift
parameter α which is chosen to force the underlying function
to be convex (α ≥ 0) or concave (α < 0) in order to ensure
convergence. While the matrix power method is guaranteed
to converge to the principal eigenpair for (almost) every
starting vector, SS-HOPM may converge to different real-
valued eigenpairs for different starting vectors.

The symmetric higher-order power method (with no shift)
was introduced in [10], and convergence of the method
is proved for certain types of tensors in [2]. While the
symmetric higher-order power method does not converge in
general, choosing a sufficiently large (in absolute value) shift
α guarantees convergence of SS-HOPM. The convergence
properties of a given eigenpair are characterized in [1],
but there are still many open problems regarding choice of
starting vector, choice of shift, and finding eigenpairs with
certain properties.

III. EXPLOITING SYMMETRY

A. Symmetric Tensor Storage

Let A ∈ R[m,n] be a symmetric tensor. In general, A

has nm entries, but since it is symmetric, many of the entry
values are repeated and need not be stored redundantly. We
define an index as a number i ∈ {1, . . . , n}, we define a
tensor index as an array of m indices corresponding to one
entry of the tensor, and we define an index class as a set
of tensor indices such that the corresponding tensor entries
all share a value due to symmetry. For example, for m = 3
and n = 2, the possible indices are 1 and 2, and the tensor
indices [1, 1, 2] and [1, 2, 1] are in the same index class since
a112 = a121.

We can find a unique representative of an index class by
choosing the tensor index whose indices are in nondecreas-
ing order. We define this nondecreasing tensor index as the
index representation of the index class.

The index classes of A can also be characterized by the
number of occurrences of each index i ∈ {1, . . . , n} in the
tensor indices of the index class. Thus, we can define the
monomial representation of an index class as an array of
n integers where the ith entry in the array corresponds to
the number of occurences of the index i in the index class.
Following the example given above, the index class that



includes [1, 1, 2] and [1, 2, 1] has monomial representation
[2, 1] since there are two 1’s and one 2 in every tensor index
in the class.

In order to avoid redundant storage, we store only the
unique values of the tensor (i.e., one value per index class).
The following property gives the number of unique values
of a dense symmetric tensor.

Property 1: The number of unique values of a symmetric
tensor A ∈ R[m,n] is given by the binomial coefficient(

m+ n− 1
m

)
=
nm

m!
+O(nm−1).

Proof: Each index class corresponds to a unique value.
Counting the number of possible monomial representations
of length m with n possible values is equivalent to counting
the number of ways to distribute m indistinguishable balls
into n distinguishable bins, where the balls correspond to the
indices of the tensor index and the bins correspond to the
possible index values. Solving this standard combinatorial
problem yields the result.

Assuming A is dense, we can impose an ordering on the
unique entries and avoid storing any index information. We
choose to use a lexicographic order of the index classes,
increasing with respect to the index representation and
decreasing with respect to the monomial representation. That
is, the index class with index representation [i1, i2, . . . , im]
is listed before [j1, j2, . . . , jm] if i1 < j1 or if i1 = j1
and i2 < j2, and so on. Equivalently, the index class with
monomial representation [k1, k2, . . . , kn] is listed before
[l1, l2, . . . , ln] if k1 > l1 or if k1 = l1 and k2 > l2, and so
on. This corresponds to an ordering on monomials in a given
polynomial ring (the origin of the terminology). In this case,
the index classes correspond to monomials which all have
total degree m. See Table I for an example of lexicographic
ordering for both representations in the case m = 3 and
n = 4.

While the lexicographic ordering makes storing index
information for every unique value unnecessary, it is im-
portant to compute index information during computations.
Since the index representation requires m integers and the
monomial representation requires n integers and we expect
n� m for most problems, we store the index representation
and compute monomial representation values implicitly.

B. Computational Kernels

The two most computationally intensive kernels in SS-
HOPM are computing the scalar Axm and the vector
Axm−1, where A ∈ R[m,n] is symmetric and x ∈ Rn.
Both of these are instances of the symmetric tensor-vector
multiply given in Definition 2, with p = 0 and p = 1,
respectively.

Table I
SET OF INDEX CLASSES I[3,4] IN LEXICOGRAPHIC ORDER.

index monomial
1 1 1 1 3 0 0 0
2 1 1 2 2 1 0 0
3 1 1 3 2 0 1 0
4 1 1 4 2 0 0 1
5 1 2 2 1 2 0 0
6 1 2 3 1 1 1 0
7 1 2 4 1 1 0 1
8 1 3 3 1 0 2 0
9 1 3 4 1 0 1 1
10 1 4 4 1 0 0 2
11 2 2 2 0 3 0 0
12 2 2 3 0 2 1 0
13 2 2 4 0 2 0 1
14 2 3 3 0 1 2 0
15 2 3 4 0 1 1 1
16 2 4 4 0 1 0 2
17 3 3 3 0 0 3 0
18 3 3 4 0 0 2 1
19 3 4 4 0 0 1 2
20 4 4 4 0 0 0 3

1) Tensor times same vector in all modes: Consider the
case p = 0:

Axm =
n∑

i1=1

· · ·
n∑

im=1

ai1···imxi1 · · ·xim . (3)

For a nonsymmetric tensor, this summation requires at least
one multiplication for each term (corresponding to each
entry of A), yielding at least nm flops. However, we can
exploit symmetry to reduce the computational complexity.
Note that the tensor index matches the indices of the x vector
entries for each term in the summation. Since the product
of a set of numbers is also invariant under permutation, all
of the terms in the summation corresponding to the same
index class will have the same value.

For example, for m = 3 and n = 2, the term in the
summation corresponding to the tensor index [1, 1, 2] is
given by a112 · x1 · x1 · x2 = a112x

2
1x2, and the term in

the summation corresponding to the tensor index [1, 2, 1] is
given by a121 · x1 · x2 · x1 = a121x

2
1x2. Any tensor index

with monomial representation [2, 1] yields this value.
We can avoid recomputing the redundant value by instead

computing the number of times each unique term appears in
the summation, which is given by the following property.

Property 2: The number of tensor indices of a symmetric
tensor A ∈ R[m,n] in the index class with monomial
representation [k1, k2, . . . , kn] is given by the multinomial
coefficient (

m

k1, k2, . . . , kn

)
=

m!
k1! k2! · · · kn!

.

Proof: Consider the monomial representation
[k1, k2, . . . , kn]. Counting the number of tensor indices in
this class is equivalent to counting the number of ways
one can distribute m distinct balls into n distinct bins such



1: function y = SYMMTENSORVECTORMULT0(A, x)
2: y ← 0
3: I ← [1, . . . , 1] . length m
4: for j = 1 to

`m+n−1
m

´
do

5: x̂← xI1 · xI2 · · ·xIm
6: c← MULTINOMIAL0(I)
7: y ← y + c ·Aj · x̂
8: I ← UPDATEINDEX(I) . See Figure 4
9: end for

10: end function

11: function c = MULTINOMIAL0(I)
12: div← 1 . divisor of

` m
k1,...,kn

´
13: curr← −1 . current index value
14: mult← −1 . multiplicity of curr
15: for j = 1 to m do
16: if Ij 6= curr then
17: mult← 1
18: curr← Ij
19: else
20: mult← mult + 1
21: div← div · mult
22: end if
23: end for
24: c = m! / div . set c =

` m
k1,...,kn

´
25: end function

Figure 2. Pseudocode for computing y = Axm via Equation 4. We
assume the unique entries of the symmetric tensor A ∈ R[m,n] are
stored in lexicographic order in the array A, x ∈ Rn, and y ∈ R. The
helper function MULTINOMIAL0 computes the multinomial coefficient (the
number of occurrences in the summation) of an index class via the index
representation I .

that the ith bin has ki balls. Here the balls correspond
to the (ordered) indices of the tensor index and the bins
correspond to the possible index values. Solving this
standard combinatorial problem yields the result.

We can thus rewrite Equation 3 as

Axm =
∑

I∈I[m,n]

(
m

k1, k2, . . . , kn

)
ai1···im xk1

1 · · ·xkn
n ,

(4)
where I[m,n] is the set of index classes for a symmetric
tensor in R[m,n], and [k1, . . . , kn] and [i1, . . . , im] are the
monomial and index representations of the index class I ,
respectively. Equation 4 yields the pseudocode in Figure 2,
which assumes the unique values of A are stored in lexi-
cographic order. For each unique value, the algorithm com-
putes the index array and multinomial coefficient associated
with the tensor entry and adds the contribution of that term
to the accumulating result.

2) Tensor times same vector in all modes but one: Now
consider computing the vector Axm−1, the case p = 1 in
Definition 2:(

Axm−1
)
i1

=
n∑

i2=1

· · ·
n∑

im=1

ai1···imxi2 · · ·xim (5)

Note that the jth component of Axm−1 does not depend on
every tensor entry, only those tensor entries whose index
representation starts with index j. Because of symmetry,

Equation 5 can be rewritten with i1 appearing as any index
in the tensor index of the tensor value.

As in the case of computing Axm, we can exploit sym-
metry to avoid performing the more than nm multiplications
required to compute all entries of the output vector if we
followed Equation 5. As before, if a tensor value contributes
to the summation for index k of the output vector, its
symmetric counterparts contribute the same value to the sum.
Following the example given before, where m = 3 and
n = 2, both a112 and a121 contribute to the computation
of
(
Axm−1

)
1
, and each contributes the value a112 · x1 · x2.

Note that a211 does not contribute to the summation for(
Axm−1

)
1
, because its first index is not 1.

Computing the number of tensor indices in an index
class that contribute to a given entry of the output vector
is a variation on Property 2. Consider an index class that
contributes to the jth entry of the output vector (i.e., an
index class whose index representation includes an index
j). Let [k1, k2, . . . , kn] be the monomial representation, so
that kj > 0. In the context of assigning m balls to n bins
with appriopriate multiplicities, we can assign the first ball
to the jth bin (enforcing that the tensor index starts with j).
Then we have m − 1 more balls to assign to the n bins,
but only kj − 1 more are assigned to the jth bin. Thus, the
number of tensor indices that contribute the same value to
the jth element is given by the multinomial coefficient

σ(j) =
(

m− 1
k1, . . . , kj − 1, . . . , kn

)
.

Now we can rewrite Equation 5 as(
Axm−1

)
j

=
∑

I∈I[m,n]

kj>0

σ(j) ai1···imx
k1
1 · · ·x

kj−1
j · · ·xkn

n

(6)
where I[m,n] is the set of index classes for a symmetric
tensor in R[m,n], and [k1, . . . , kn] and [i1, . . . , im] are the
monomial and index representations of the index class I ,
respectively. Equation 6 yields the pseudocode in Figure 3.

3) Index array calculations: We can compute the in-
dex representation of an index class quickly by exploit-
ing the lexicographic ordering and computing each index
representation from the previous one. That is, given any
index representation, we want to compute the next larger
index representation in the lexicographic order, under the
conditions that the indices within the index representation
are nondecreasing and range between 1 and n.

To find the next representation, we seek to increment
the least significant possible index (i.e., the rightmost index
not equal to n). In the example given in Table I, the
successor of [1, 1, 1] is [1, 1, 2] (the last index is incre-
mented). More generally, suppose the kth index is the least
significant index not equal to n, so that the index class is



1: function y = SYMMTENSORVECTORMULT1(A, x)
2: y← 0
3: I ← [1, . . . , 1] . length m
4: for j = 1 to

`m+n−1
m

´
do

5: for unique i ∈ I do . skip repeated indices
6: x̂← xI1 · xI2 · · ·xIm / xi

7: c← MULTINOMIAL1(I , i)
8: yi ← yi + c ·Aj · x̂
9: end for

10: I ← UPDATEINDEX(I) . See Figure 4
11: end for
12: end function

Figure 3. Pseudocode for computing y = Axm−1 via Equation 6. We
assume the unique entries of the symmetric tensor A ∈ R[m,n] are stored
in lexicographic order in the array A, and x,y ∈ Rn. The helper function
MULTINOMIAL1 (not shown here) is a variant of MULTINOMIAL0 and
computes the multinomial coefficient (the number of occurrences in the
summation) of the index class and index via the index representation I .

1: function UPDATEINDEX(I)
2: j ← m
3: while Ij = n do . find least sig. index 6= n
4: j ← j − 1
5: end while
6: Ij ← Ij + 1 . increment least sig. index 6= n
7: for k = j + 1 to m do . update less sig. indices
8: Ik ← Ij
9: end for

10: end function

Figure 4. Pseudocode for updating the index representation to its successor
in lexicographic order of unique entries in a symmetric tensor A ∈ R[m,n].

[i1, . . . , ik, n, . . . , n].2 Thus, this is the largest representation
with prefix [i1, . . . , ik, . . . ], so the successor must have
prefix [i1, . . . , ik + 1, . . . ]. The smallest such representation
that satisfies the nondecreasing condition is

[i1, . . . , ik + 1, ik + 1, . . . , ik + 1].

For example, again from Table I, the successor of [2, 4, 4]
is [3, 3, 3]. See Figure 4 for the pseudocode. In this way,
we can store index information in an array of m integers,
and under the lexicographic ordering, and updating the index
information for each term in the summation requires O(m)
operations.

4) Computing number of occurrences: The number of
occurrences of each index class is given by a multinomial
coefficient in terms of the monomial representation of the
index class. Since we store the index representation and not
the monomial representation, we compute the multinomial
coefficient implicitly. We can do this by computing the
denominator with one pass over the array storing the index
representation. The numerator is constant over all index
classes and can be precomputed (either m! or (m− 1)! for
the two computational kernels).

In the case of computing Axm, the task is to compute for
each index class the product k1! · · · kn!, where [k1, . . . , kn] is

2Note that there may be no instances of index n in the index class, in
which case k = m, the index class is [i1, . . . , ik], and the successor is
[i1, . . . , ik + 1].

the monomial representation which is not stored explicitly.
Note that ki is the number of occurrences of index i in
the index representation which is stored in memory. Since
the index representation is nondecreasing, repeated occur-
rences of an index are contiguous. Thus, as we pass over
the index array, we can multiply the accumulated product
by 1 for the first occurrence of an index, by 2 for the
second occurrence, and so on. For example, given the index
representation [1, 2, 2, 5, 5, 5, 5], the accumulated product is
1 · 1 · 2 · 1 · 2 · 3 · 4 = 1! · 2! · 4!. This approach yields the
function MULTINOMIAL0 in Figure 2.

In the case of computing Axm−1, we take the same
approach to compute the denominator, but we ignore one
occurrence of the index corresponding to the entry of the
output vector being computed. Following the preceding ex-
ample, in the case of computing the 5th element of Axm−1,
the index representation [1, 2, 2, 5, 5, 5, 5] would yield to the
accumulated product 1 · 1 · 2 · 1 · 2 · 3 = 1! · 2! · 3!. This
approach yields the function MULTINOMIAL1 in Figure 3
(pseudocode not shown).

5) Computational costs: All the computations in the main
loop of Figure 2 are done in O(m) operations (floating
point and otherwise). Thus, the computational complexity
of computing Axm is O

(
m · nm

m!

)
= O

(
nm

(m−1)!

)
.

There are nested loops in Figure 3, and the inner loop
requires m iterations in the worst case. All the computations
in the inner loop are done in O(m) operations (floating
point and otherwise), so the computational complexity of
computing Axm−1 is O

(
m2 · nm

m!

)
= O

(
mnm

(m−1)!

)
.

These computational costs (as well as the storage require-
ments) are summarized in Table II, which also provides a
comparison to the costs of general nonsymmetric tensors. In
the general case, both Axm and Axm−1 can be computed
by a sequence of matrix-vector products with the proper
matricization of A and reshaping of results. The cost is
dominated by the first matrix-vector product in which the
matrix has size nm−1 × n.

In the symmetric case, we can also trade off computation
and storage. The results of Table II assume that the multi-
nomial coefficients and index array updates are computed
at every iteration. Alternatively, we can pre-compute and
store both multinomial coefficient information and index
arrays for each unique entry. This reduces the computational
complexities of both kernels to nm

(m−1)! + O(nm−2) (this
count does not include the pre-computation) but increases
the storage requirements by a factor of (m + 2). Note that
the extra storage is all integer information, and for most
values of n and m, this data could be compressed into only
a few bits per integer. This information can also be shared
by different tensors of the same order and dimension; we use
this in our application of many small tensor eigenproblems
which all have the same size (see Section V).



Table II
COMPARISON OF STORAGE AND COMPUTATIONAL COSTS BETWEEN

GENERAL AND SYMMETRIC TENSORS IN R[m,n] .

general symmetric
storage nm nm

m!
+O

`
nm−1

´
computation (Axm) 2nm +O(nm−1) O

“
nm

(m−1)!

”
computation (Axm−1) 2nm +O(nm−1) O

“
mnm

(m−1)!

”

IV. DETECTING NERVE FIBER DIRECTION IN THE BRAIN

We next discuss an application well-suited for compu-
tation on a GPU. It involves many independent problems
that can be solved in parallel, and each problem involves
an amount of data that is small enough to reside in the
memories on the streaming multiprocessors.

Diffusion-weighted magnetic resonance imaging (DW-
MRI) is a tool used to detect nerve fibers in the brain. It
is a non-invasive procedure that uses magnetic resonance to
measure how quickly water diffuses in a certain direction.
Water diffuses more quickly along the longitudinal axis of
nerve fiber bundles than in any transverse or axial direc-
tion. DW-MRI measurements are taken from many different
orientations for a discrete set of voxels in the brain. For
each voxel, a diffusion function D : Σ → R which maps
an orientation to its rate of diffusion (here Σ denotes the
unit sphere in R3) is approximated using the measurement
data. For a unit vector g, D(g) is known as the “apparent
diffusion coefficient” (ADC) [6].

When a voxel includes only one fiber orientation, the
longitudinal direction should (globally) maximize D (it will
exhibit the largest ADC). When a voxel includes more than
one fiber orientation (in the case of crossing fibers), each
fiber orientation should correspond to a local maximum of
D.

According to [4]–[6], a common way to approximate the
diffusion function is as a finite sum of spherical harmonic
functions (which form a basis for complex functions on the
unit sphere). The 2nd order series (with 6 terms) corresponds
to a quadratic form

D(g) ≈ gT Mg

where M is a symmetric positive definite 3 × 3 matrix. In
this case, at least six measurements are required to determine
the unique entries in the matrix M (or the six coefficients of
the first spherical harmonic functions). In the case of a voxel
with one principal fiber orientation, this approach is usually
sufficient for resolving the correct orientation. However, in
the case of fiber crossings or other complications such as
bending or fanning fiber bundles, the approximation is often
unable to resolve the fiber directions.

In order to handle such cases, more accurate measure-
ments and approximations are necessary. The approach is to
use higher order spherical harmonic series approximations

which can be represented not as quadratic forms, but more
generally as homogeneous forms. The homogeneous forms
correspond to higher order tensors:

D(g) ≈ Agm

for some symmetric tensor A ∈ R[m,3]. Note that m must
be even since D(g) is a positive physical quantity for all
g (if m is odd then A(−g)m = −Agm). More DW-MRI
measurements are required to determine the greater degrees
of freedom in tensors of order m > 2, and the higher
order polynomial can better approximate the true diffusion
function. Orders m = 4 and m = 6 are most commonly
used (m = 4, m = 6, and m = 8 require at least 15,
28, and 45 measurements respectively). The correspondence
between coefficients of spherical harmonic functions with
the entries in the associated symmetric tensor are given in
[6].

As described in [1], the critical points of the function
f(x) = Axm and their function values are exactly the
eigenpairs of the tensor A (satisfying Equation 2). Thus,
in order to determine the principal fiber orientations in a
given voxel, we can compute the principal eigenvectors of
the associated tensor.

V. IMPLEMENTATION DETAILS

The computational problem for the nerve fiber data is
to take as input a three-dimensional array of symmetric
tensors and output one or more eigenpairs for each tensor.
The three-dimensional array corresponds to the set of voxels
which discretize the volume of a brain. The entries of each
tensor correspond to the coefficients of the homogeneous
polynomial which approximates the diffusion function for a
given voxel. The eigenpairs which define local maxima of
the approximate diffusion function correspond to principal
nerve fiber directions within the voxel.

In order to find multiple eigenpairs, SS-HOPM must be
executed with different starting vectors. We use many
randomly chosen starting vectors in order to get reasonable
coverage of the unit sphere. We choose random vectors by
independently selecting each vector entry uniformly from
[−1, 1] and then normalizing. Alternatively, one could use
a deterministic approach and pick starting vectors evenly
spaced about the sphere.

The computational problem consists of executing SS-
HOPM with many different tensors and many different
starting vectors each. Since the voxel size for DW-MRI is
on the order of one cubic millimeter, the number of voxels
in a data set for a human brain can be in the millions.

We discuss two different implementations in this section.
The first implementation works for sets of tensors of general
order and dimension (though each tensor in the set must
be the same size). The second implementation includes an
optimization of complete loop unrolling (see Section V-D)



that is tailored to tensors of order m = 4 and dimension
n = 3 which occur in our application.

A. Synthetic Test Set

We experimented with a synthetic test set provided by the
Scientific Computing and Imaging Institute at the University
of Utah. It consists of 1024 tensors corresponding to a 2D
array of voxels which includes some with one and some
with two principal fiber directions. Each tensor is 4th order
and has dimension n = 3, so each has 81 total entries with
15 unique values. We chose to use 128 starting vectors for
each tensor in the hope of reasonably covering the sphere in
R3 and also because it is a multiple of 32, the physical warp
size on the GPU. We used a shift of α = 0 as it yielded
correct results for the tensors in this synthetic set (though
we have no proof of convergence for α = 0 and this set
of tensors). Note that α = 0 implies that SS-HOPM is the
same algorithm as the one given in [2], [10]. Although the
performance of the implementation will not vary much with
α, choosing an appropriate shift for real data will balance
a tradeoff between guarantees of convergence and time-to-
completion. To find local maxima, a nonnegative shift must
be used.

B. Thread Organization

Because of the number of independent problems, we are
able to map the computation to the GPU in a straightforward
way with minimal synchronization. We organize the CUDA
threads in the following way: assign a thread block to
each tensor and assign each thread in a thread block to
a different starting vector. Since the number of starting
vectors is greater than the warp size, each thread block
utilizes all the processors on its multiprocessor. Similarly,
as long as the number of tensors is at least 50 or so, all
of the multiprocessors are utilized with three or four thread
blocks each (multiple thread blocks are necessary to fill the
instruction pipelines). We note that for larger numbers of
tensors, this approach generalizes to a system with multiple
GPUs.

C. Data Structures

Because of the small size of the tensors and vectors in this
problem, we can fit all the data for each thread block in the
memory on the multiprocessor and minimize the accesses
to device memory. Let T be the number of tensors, U be
the number of unique entries in each tensor, and V be the
number of starting vectors. Recall that for this problem, m =
4, n = 3, T = 1024, U = 15, and V = 128. For real data,
we expect T to grow into the millions but the rest of the
parameters will remain constant, though V could be varied
experimentally. The tensor data is of size T ·U , the array of
starting vectors is n×V , the array of output eigenvectors is
n × (T · V ), and the array of output eigenvalues is of size

T · V . Note that every thread block can use the same set of
starting vectors, but each has its own set of output vectors.

In addition to the main data structures, we pre-compute
and store the index and multinomial coefficient information
required in Figures 2 and 3. In the general implementation,
the index information is stored as an array of size m×U and
can be shared by all threads since all tensors are of the same
order and dimension. We store the multinomial coefficient(

m
k1,...,kn

)
for each unique tensor value, where [k1, . . . , kn] is

the monomial representation of the index class of the unique
entry. In this way, finding the number of occurrences of an
entry for Axm is just a look-up, and computing the related
multinomial coefficients used in Axm−1, which are of the
form

(
m−1

k1,...,ki−1,...,kn

)
for some i, can be done by reading

the stored value, multiplying by ki and dividing by m.3

D. Loop Unrolling

For a given order and dimension, we can unroll the
loops within the two main computational kernels. This
enables us to exploit the register file for storing the input
and output vectors by statically allocating register variables
corresponding to input and output vector entries. Not only
does this expose instruction-level parallelism to the compiler,
it also removes the indirection in accessing input and output
vector entries. Further, it obviates the need to store index
information and multinomial coefficients explicitly; these
can be computed during the code generation at compile-
time. This is possible for small problems, but to scale to
larger problems we need a blocked approach. Handling the
different cases that arise when blocking a symmetric tensor
is future work. In the case m = 4 and n = 3, the number of
terms in the summation for Axm is 15, and each of the three
summations for the entries of the output vector Axm−1 have
10 terms.

Another possible optimization would be to use common
subexpression elimination on the unrolled summations. This
optimization would reduce the flop count but also introduce
dependencies in the unrolled instructions.

E. Results

The GPU used for these results is an NVIDIA Tesla C
2050 (Fermi) which has a single precision peak performance
of 1030 GFLOPS. The CPU used is a dual-socket quad-core
Intel Nehalem. Each core has a theoretical single precision
peak performance of 22.4 GFLOPS. The parallel CPU code
uses OpenMP. All computations are done in single precision,
and we use 128 starting vectors in all cases.

We report on eight different implementations. We bench-
mark a completely sequential implementation, using one
core of the CPU; parallel CPU implementations, using four
cores (one socket) and eight cores (both sockets); and our

3One might consider storing the “coefficient”
` m−1
k1,...,kn

´
so that only

one multiply is needed to update the stored value for each kernel, but note
that this value is not an integer in general.



(a) Flop rates in GFLOPS
General Unrolled Unrolled speedup

CPU - 1 core 0.24 2.05 (9% peak) 8.47
CPU - 4 cores 0.86 7.07 (8% peak) 8.23
CPU - 8 cores 1.73 9.67 (5% peak) 5.60

GPU 17.00 317.83 (31% peak) 18.70

(b) Run times in milliseconds
General Unrolled

CPU - 1 core 2451 289
CPU - 4 cores 691 84
CPU - 8 cores 344 61

GPU 35 1.9

(c) Relative performance, normalized to se-
quential implementations

General Unrolled
CPU - 1 core 1.00 1.00
CPU - 4 cores 3.55 3.45
CPU - 8 cores 7.14 4.72

GPU 70.23 155.07

Table III
PERFORMANCE RESULTS FOR SIX DIFFERENT IMPLEMENTATIONS ON

ALL 1024 TENSORS

GPU implementation. In each case, we benchmark both the
general version of the code and the loop-unrolled version
which is specialized to tensors of order m = 4 and
dimension n = 3. The CPU implementation executes the
same algorithm as the GPU implementation, and the CPU
parallelization is achieved with an omp for pragma on the
loop over the input tensors. Note that no memory hierarchy
optimizations are used in the CPU implementations, and
we do not exploit the SIMD parallelism available on the
Nehalem.

Table III shows the performance results for all eight im-
plementations computing the eigenpairs for all 1024 tensors.
Table III(a) shows the absolute performance and gives the
speedup observed for each implementation by unrolling the
loops. Comparing the unrolled code to the general imple-
mentations, we see that unrolling yields over 8× speedup
for the sequential implementation and a 19× speedup for
the GPU implementation. Table III(b) shows the run times,
and in Table III(c), the relative performance values are
normalized to the sequential CPU implementations to show
parallel speedups. The CPU implementation (sequential or
parallel) is not optimized for the memory hierarchy and
we do not exploit SSE intrinsics. We chose the GPU as
the platform for our primary implementation because of
the large number of small, independent problems in this
application. Future research will explore which architecture
is better suited for computing eigenpairs of larger tensors or
tensor applications with less inherent parallelism. In either
case, developing high performing code for general orders
and dimensions will require an efficient blocking strategy to
allow for loop unrolling and the use of register variables.

Figure 5 shows performance results for the four different

Figure 5. Performance results for running SS-HOPM on sets of 4th order
3-dimensional tensors (with unrolled loops) with 128 starting vectors each.
Note the y-axis is a log scale.

implementations for subsets of the 1024 tensors in our test
set. Each implementation exploits loop unrolling. Because
of the independence of the tensor eigenproblems, the par-
allel CPU implementation achieves nearly perfect parallel
speedup over four threads with only a slight modification
of the sequential code using OpenMP pragmas. We did not
observe the same scaling using 8 threads (all cores available
on the Nehalem) and we believe this is due to inefficient use
of the memory hierarchy across both sockets.

Our GPU implementation does not perform as well for
larger problems because it uses the register file to store
both input and output vectors for each thread and shared
memory to store a tensor for each thread block. As the tensor
size grows, the per-thread and per-thread-block memory
requirements also grow, resulting in decreased occupancy on
the GPU (fewer threads and thread blocks scheduled simul-
taneously on each multiprocessor). We observe decreased
performance for tensor sizes past a threshold of around
order 4 and dimension 5. We also note that the code does
not exploit features specific to the Fermi architecture. We
obtained similar performance (relative to peak) for tensors
of order 4 and dimension 3 on two other NVIDIA GPUs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present an implementation of SS-HOPM
targeted for a GPU. We describe how to exploit symmetry
to save both storage and computation in the two main
computational kernels of the algorithm, and for the case of
solving many small tensor eigenproblems we show how to
map the computation onto a GPU. For our experimental data
set, we achieved large parallel speedups over a sequential
code using the same low-level optimizations (but no memory
hierarchy optimizations).

We believe that the techniques for exploiting symmetry



may be extended to other computations involving symmetric
tensors, but many open questions remain about how to write
sequential or parallel implementations of the computational
kernels that scale to higher order and higher dimension
tensors. For the computations Axm and Axm−1, we hope
to be able to attain the same performance reported here
for tensors of general size using register blocking and loop
unrolling. The main implementation challenges will be to
classify the various shapes of register blocks that arise (for
each order m) so that each shape may be handled separately,
and also to determine an implicit ordering on the unique
tensor entries that attains the best cache behavior.

ACKNOWLEDGMENT

We would like to thank Fangxiang Jiao, Yaniv Gur, and
Chris Johnson of the Scientific Computing and Imaging
Institute at the University of Utah for the motivating ap-
plication and for providing the sample data.

This work was funded by the applied mathematics pro-
gram at the U.S. Department of Energy and by the Labora-
tory Directed Research and Development (LDRD) program
at Sandia National Laboratories. Sandia National Labo-
ratories is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the United States Department of Energy’s
National Nuclear Security Administration under contract
DE-AC04-94AL85000.

REFERENCES

[1] T. G. Kolda and J. R. Mayo, “Shifted power method for
computing tensor eigenpairs,” Jul. 2010, arXiv:1007.1267v1.

[2] E. Kofidis and P. A. Regalia, “On the best rank-1 approxima-
tion of higher-order supersymmetric tensors,” SIAM Journal
on Matrix Analysis and Applications, vol. 23, no. 3, pp. 863–
884, 2002.

[3] R. Diamond, “A note on the rotational superposition prob-
lem,” Acta Crystallographica Section A, vol. 44, no. 2, pp.
211–216, Mar 1988.

[4] E. Özarslan and T. H. Mareci, “Generalized diffusion tensor
imaging and analytical relationships between diffusion ten-
sor imaging and high angular resolution diffusion imaging,”
Magnetic Resonance in Medicine, vol. 50, pp. 955–965, 2003.

[5] ——, “Generalized scalar measures for diffusion MRI us-
ing trace, variance, and entropy,” Magnetic Resonance in
Medicine, vol. 53, pp. 866–876, 2005.

[6] T. Schultz and H.-P. Seidel, “Estimating crossing fibers:
A tensor decomposition approach,” IEEE Transactions on
Visualization and Computer Graphics, vol. 14, pp. 1635–
1642, 2008.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500,
2009.

[8] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Sym-
metric tensors and symmetric tensor rank,” SIAM Journal on
Matrix Analysis and Applications, vol. 30, no. 3, pp. 1254–
1279, 2008.

[9] D. Cartwright and B. Sturmfels, “The number of eigenvalues
of a tensor,” Apr. 2010, arXiv:1004.4953v1.

[10] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the
best rank-1 and rank-(R1, R2, . . . , RN ) approximation of
higher-order tensors,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1324–1342, 2000.


