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1. Introduction
In this study, we formulate the transmembrane pro-
tein structure determination problem as a bound-
constrained nonlinear optimization problem,

min f �x�

s.t. � ≤ x≤��
(1)

where f � �n →� is a nonlinear function; x���� ∈�n;
and � and � are given lower and upper bounds on
x respectively. In this application, the objective func-
tion f is an empirical scoring function designed to
rate the validity of proposed transmembrane protein
structures. The variable x ∈ �n represents the spa-
tial positions of certain components of the transmem-
brane protein, and the bounds � and � are derived
using observed properties of these components.
There is a wide variety of optimization methods

available for finding a solution to (1). However, the
effectiveness and efficiency of these algorithms can
be application specific. Hence, answering the question
of which to use is not easy. In this paper, we exam-
ine the transmembrane protein structure identification
problem and its model formulation. We consider two
different optimization algorithms that are appropri-
ate for this application. We discuss why we chose
these two methods and compare and contrast numer-
ical results for a transmembrane protein of known
structure.

This paper is organized as follows. In §2 we discuss
the biological significance of transmembrane proteins
and the importance of determining their structures.
Then, in §3 we describe the mathematical formulation
of the transmembrane protein structure determination
problem and give some details of the scoring func-
tion. Section 4 reviews the basic characteristics of the
optimization methods that we chose to apply to the
problem, motivates their use, and gives the details of
their implementations. The results of our numerical
study are presented in §5. Finally, in §6 we summarize
our work and draw conclusions.

2. Biological Background
Approximately one third of the proteins encoded
for by a typical genome are transmembrane proteins
(Buchang et al. 2002), and they participate in many
important cellular processes. Some transmembrane
proteins form a channel through which certain ions
and molecules can enter or leave the cell. Others
act as signal transduction receptors or play roles in
cell recognition, senses mediation, or cell-to-cell com-
munication. Many diseases are the result of trans-
membrane protein malfunction, absence, or mutation.
Hence, these proteins are an important target of
drug design. In fact, a large percentage of the cur-
rent pharmaceuticals act on transmembrane proteins
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(Wilson and Bergsma 2000). Additional information
about the structure and function of transmembrane
proteins can be found in texts such as Brandon and
Tooze (1999), Banaszak (2000), Creighton (1992), and
references therein.
Like all proteins, a transmembrane protein is a

macromolecule consisting of a chain of amino acids.
The defining characteristic of a transmembrane pro-
tein is that this chain traverses the cell membrane
one or more times. For example, a G-protein-coupled
receptor, one type of transmembrane protein involved
in signal transduction, spans the cell membrane
seven times. The portion of the transmembrane pro-
tein within the cell membrane consists primarily of
hydrophobic amino acids, while the portion outside
the cell membrane consists mainly of hydrophilic
amino acids. These characteristics, in conjunction with
the makeup of the cell membrane, dictate the over-
all structure of transmembrane proteins. In particular,
due to the chemical environment of the membrane
interior, the amino acids that are inside the cell
membrane form stable secondary structures includ-
ing �-helices and �-sheets. To date, two major struc-
tural classes of transmembrane domains have been
observed: all �-helical and all �-stranded. We will
limit the subsequent discussion to the all �-helical
case and note that 20% to 30% of a genome’s pro-
teins are likely to have a transmembrane helical
domain (Wallin and Heijne 1998, Krough et al. 2001).
In this study, we consider a transmembrane pro-
tein to consist of a bundle of connected �-helices.
Figure 1 contains an illustration of the transmem-
brane protein rhodopsin contained in a retina cell
membrane. In this figure, the seven linked cylinders,
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Figure 1 Illustration of the Transmembrane Protein Rhodopsin
Note. Copyright © 2001, T. Hulsen and D. Lutje Hulsik; reprinted with per-
mission.

labeled A through G, represent the seven �-helices
that traverse the cell membrane. (Note that this figure
was obtained from the G-protein-coupled receptor
website (Hulsen and Lutje-Hulsik 2001).)
As of May 2004, the protein data bank (PDB) con-

tains over 25�000 structures, and its size is increas-
ing exponentially (Berman et al. 2000). However, the
majority of the proteins found in the PDB are solu-
ble proteins. In contrast, the structures of only about
80 transmembrane proteins have been determined
(White 1998 and references therein). This is due to the
fact that experimental structure determination meth-
ods such as X-ray crystallography and nuclear mag-
netic resonance (NMR) have been difficult to apply
to transmembrane proteins. Furthermore, because so
few transmembrane protein structures have been
determined, few suitable templates exist for homol-
ogy modeling (Herzyk and Hubbard 1998). Therefore,
the development of an integrated computational/
experimental model to address transmembrane pro-
tein structure and function questions is an important
challenge in the field of structural biology.
The modeling of transmembrane proteins can be

broken up into the separate tasks of defining the
transmembrane helices and determining the rela-
tive orientation of these helices. A process known
as sliding-window hydrophobicity is an accurate and
well established method of predicting transmem-
brane helices given their amino acid sequences (Rose
1978; Jayasinghe et al. 2001a, b). No widely accepted
method has yet emerged to subsequently ascertain
the spatial locations of these helices. Because the cell
membrane imposes certain structural constraints on
the positions of the helices and thus limits the num-
ber of possible structures, several ab-initio computa-
tional approaches have been proposed (Bowie 1999,
Nikiforovich et al. 2001, Vaidehi et al. 2002). One
such procedure is based on the fact that the confor-
mational space of membrane proteins can be effec-
tively sampled and enumerates all the possible helical
bundles (Bowie 1999). However, this method neglects
the orientations of the individual helices around their
respective axes. Several other promising methods
have been specifically designed for G-protein coupled
receptors but have yet to be validated for other trans-
membrane proteins (Nikiforovich et al. 2001, Vaidehi
et al. 2002, Dobbs et al. 2002).

3. Transmembrane Protein Structure
Determination

In Faulon et al. (2003), Sale et al. (2004), a novel
two-step approach for determining the spatial loca-
tion of the transmembrane protein helices is pro-
posed. The first step, described in detail in Faulon
et al. (2003), involves searching the conformational



Gray et al.: Optimizing an Empirical Scoring Function for Transmembrane Protein Structure Determination
408 INFORMS Journal on Computing 16(4), pp. 406–418, © 2004 INFORMS

space of transmembrane proteins to find a set of
candidate helical bundles matching some given exper-
imental distance constraints. The second step refines
and reduces this set of bundles via optimization tech-
niques. Using the structures obtained in step one as
starting points, solutions to problem (1) are sought,
where the objective function f assigns a score to each
candidate helical arrangement that indicates how sim-
ilar it is to the true structure. The minimization prob-
lem of step two is the focus of this paper.

3.1. Mathematical Description of the Problem
In this study, determining the structure of the trans-
membrane protein focuses on describing the relative
orientation of the helices, or how they bundle. Each
helix is assumed to be a rigid body, so we describe
its position in space using its center of mass and a
line segment defined by the two points centered in
the terminal turns of the helical ends. We define a
three-dimensional reference space for each helix using
its initial center of mass and initial helix axial line
segment. In other words, the position of each helix
is defined in terms of its original location. Then, the
variables in (1) are merely the x�y� and z transla-
tions from the original centers of mass of each helix
and the x�y� and z rotations about the initial helix
axial line segment for each helix. This is illustrated
in Figure 2. Hence, a transmembrane protein with
m helices has 6m variables. At this time, we do not
consider the loops that connect the helices as part of
the structure determination but note that they can be
added via existing techniques after the helical posi-
tions have been established (Vriend 1990, Xiang and
Honig 2001).
Most of the 6m variables have simple bounds that

derive from the fact that transmembrane proteins
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Figure 2 Depiction of the Six Positional Variables Associated with Each Helix
Note. Translations on the left and rotations on the right.

reside in the cell membrane. The restrictions on the
x and y rotations of each helix are based on the sur-
vey of helix tilt angles given in Bowie (1997). The
z rotational variables have no such limitations and
are allowed to vary in the entire z-rotational space.
Both the x and the y translations are confined to
a space that is approximately one third of the total
radius of the membrane protein. These constraints are
based on the study of helix packing behavior pre-
sented in Bowie (1997). The z translation variables
have the tightest bounds to restrict the helical por-
tions of the transmembrane protein to the interior of
the cell membrane.
We now need a way to compare possible struc-

tures and decide which one best approximates the
transmembrane protein in question. If the structure
were known, such comparisons could be made sim-
ply using root mean square deviation (RMSD), a
way of comparing two protein structures by calcu-
lating the sum of the distances of comparable atoms;
see, for example, Leach (2001). However, the overall
goal of this work is to identify unknown transmem-
brane protein structures, so we must develop another
technique. We use a penalty scoring function known
as Bundler to rate each structure (Sale et al. 2004).
Bundler measures how well a structure conforms to
specific criteria based on experimental data and helix
bundling features described in the literature, and it
does not require any a priori knowledge of the loca-
tion of the helices. The Bundler score is smallest for
those structures that most closely meet the specified
criteria. Thus, we define an objective function f for
problem (1) using Bundler to give this structure a
score. Therefore, minimizing f is the computational
tool for determining the structure of a transmembrane
protein.
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3.2. The Scoring Function: Bundler
As previously stated, the Bundler scoring function
combines experimental data and topological models
created from a survey of known transmembrane helix
packing interactions. For each structure, the score is
calculated as the sum

P = PE + PI� (2)

where PE quantifies the structure’s violation of a set
of experimental distance constraints and PI quanti-
fies how well the structure satisfies some helix pack-
ing parameters determined by analyzing a set of 16
nonredundant membrane proteins (Sale et al. 2004).
It has been shown that distance constraints are

important in determining transmembrane protein
structure. In fact, the number of possible structures
decreases exponentially with the number of distance
constraints available and increases exponentially with
the error on the distance measures (Faulon et al.
2003). Bundler incorporates experimental distance
constraints in the term

PE =
∑

�a� b�∈�

KE ∗




�dab − �ab�
2� dab < �ab�

0� �ab ≤ dab ≤ uab�

�uab − dab�
2� dab > uab�

(3)

where �ab and uab are predetermined upper and lower
bounds on the distance between atoms a and b, respec-
tively; dab is the distance between atoms a and b in the
current structure; � is a subset of atom pairs; and KE

is a force constant. The distance constraints �ab and uab

are obtained from experimental methods such as
chemical cross-linking, dipolar electron paramagnetic
resonance (dipolar EPR) (Berliner et al. 2001), fluores-
cence resonance energy transfer (FRET), or NMR for
assembling transmembrane helical proteins (Krishna
and Berliner 1999). Note that these constraints are not
procurable for every pair of atoms in the structure.
Instead, experimental distance constraints are only
available for a small subset, �, of all atom pairs.
Obtaining enough distance constraints to determine

a structure uniquely is difficult, particularly for trans-
membrane proteins (Faulon et al. 2002, 2003). Further-
more, these distances are not error free. Therefore,
to better identify desirable structures, Bundler also
includes a term that measures correspondence to
observed helix packing properties (determined from
an analysis of known structures). This term, PI , is
actually a sum of six different terms:

PI = P� + P� + P� + Psc + Pvdw + Pc (4)

Each term checks a different helical bundling prop-
erty.
The packing distance score, P�, and packing angle

score, P�� consider all the helical pairs in the bundle

and penalize them if they are too far apart or too close
together. More specifically, the packing distance score
gauges how far apart two helices are in terms of their
centers of mass, and the packing angle score exam-
ines the angle between two helices in terms of their
axial line segments. Let ! denote the set of m�m−1�/2
distinct helical pairs �i� j�. Then, the packing distance
score is defined as

P� =
∑

�i� j�∈!

K� ∗




��ij − �l�
2� �ij < �l�

0� �l ≤ �ij ≤ �u�

��u − �ij �
2� �ij > �u 

(5)

Here, �l = �̄ − 1 5s� and �u = �̄ + 1 5s�� where �̄ and
s� are the mean and standard deviation of the inter-
helical distances, respectively, which are calculated
using a set of 16 known structures; �ij is the distance
between the centers of mass of helices i and j in the
current structure; and K� is a given force constant.
Similarly, the packing angle score is defined as

P� =
∑

�i�j�∈!

K� ∗




��ij − �l�
2� �ij < �l�

0� �l ≤ �ij ≤ �u�

��u − �ij �
2� �ij > �u�

(6)

where �l = �̄−1 5s� and �u = �̄+1 5s�� and �̄ and s� are
the mean and standard deviation of the inter-helical
packing angles; �ij is the inter-helical packing angle
between helices i and j in the current structure; and
K� is a given force constant.
The packing density is defined as the ratio of atomic

volume to solvent accessible volume (Richards 1974).
It gauges how efficiently a protein folds together or,
equivalently, how much interior space is left unused.
The packing density score, P�� is defined as

P� =K� ∗




��−�l�
2� � < �l�

0� �l ≤�≤�u�

��u −��2� � > �u�

(7)

where �l = �̄−1 5s� and �u = �̄+1 5s�� and �̄ and s�

are the mean and standard deviation of the observed
packing density; � is the packing density of the cur-
rent structure; and K� is a given force constant. It
penalizes structures that are packed too tightly or too
loosely.
In transmembrane proteins, it has been observed

that amino acids have a preference for which amino
acids they interact with on neighboring helices
(Adiman and Liang 2001, Nikiforovich et al. 2001,
Adamian et al. 2003). The side-chain interaction
propensity score, Psc, incorporates this into Bundler. It
is based on the membrane helical inter-facial pairwise
(MHIP) amino acid interaction propensity table in
Adimand and Liang (2001), and it penalizes structures
containing amino acid pairs that are in contact con-
trary to their normal observed behavior. Let &i be the



Gray et al.: Optimizing an Empirical Scoring Function for Transmembrane Protein Structure Determination
410 INFORMS Journal on Computing 16(4), pp. 406–418, © 2004 INFORMS

set of C� atoms (Brandon and Tooze 1999) in helix i
and ' be the set of m consecutive helical pairs. (Note
that two helices are a consecutive pair if they are
directly connected by an outer loop.) Then, the side-
chain propensity score is defined as

Psc =
∑

�i� j�∈'

[ ∑
a∈&i� b∈&j

Ksc ∗ �p− pab�

]
� (8)

where p is the maximum propensity score in the
MHIP table, pab is the MHIP propensity value of
atoms a and b, and Ksc is a constant.
To prevent inter-helical clashes, Bundler includes

the van der Waals repulsive function (Brünger 1992)

Pvdw = ∑
�a� b�∈&

Kvdw ∗
{
0� rab ≥ sRab�

�s2R2ab − r2ab�
2� rab < sRab 

(9)

Here, & is the set of all distinct pairs of C� atoms,
rab is the distance between C� atoms a and b in the
current structure, Rab is the observed distance at
which atoms a and b interact or repulse, s is a prede-
termined van der Waals scaling factor, and Kvdw is a
given constant.
Finally, to ensure that each helix has at least two

neighboring helices, Bundler includes a contact score.
This piece of the scoring function guarantees that the
helices are packed tightly and prevents any one helix
from being excluded from the bundle. It is defined as

Pc =
∑
i∈+

Kc ∗
{
0� ci ≥ 2�
�2− ci�� ci < 2�

(10)

where + is the set of helices; ci is the number of helices
that helix i is in contact with; and Kc is a given con-
stant. Two helices are defined to be in contact if their
centers of mass are within a given distance of one
another. This distance bound is calculated using the
analysis of the 16 known structures.
Observe that both the side-chain interaction

propensity score, Psc� and the contact score, Pc� intro-
duce discontinuities in the Bundler scoring func-
tion. Moreover, PE� P�� P�� and P� contain points at
which the derivative is undefined. These properties of
Bundler are worth noting as they affect our choice of
optimization method. We also note that all the pieces
of the Bundler scoring function contain at a least
one constant as well as some predetermined bounds.
Setting these parameters is an important component
of the transmembrane protein structure determina-
tion problem but does not effect the optimization of
Bundler and is thus not addressed in this paper.

3.3. Optimizing Bundler
In this paper, we are interested in the details of opti-
mizing the Bundler scoring function, and so we have
included only a basic description of Bundler. Further

details and more specific explanations of the func-
tion’s development and validation are not critical to
our numerical study and can be found in Sale et al.
(2004). However, we wish to make some comments
and observations about Bundler in terms of our opti-
mization goals and expectations.
First, we reiterate the fact that the Bundler scor-

ing function incorporates real data obtained via lab-
oratory experimentation. Hence, there is a certain
amount of noise in our objective function. At present,
there is no regularization term in the Bundler scoring
function to prevent fitting this noise, and thus it is
not productive to demand that an optimization algo-
rithm yield a structure with a Bundler score of zero.
Moreover, we have observed that small variations in
Bundler scores result in only noise-level differences
in the structures (Sale et al. 2004), and so we do not
require a high level of accuracy from the optimization
method.
Second, we remind the reader that optimizing the

Bundler scoring function is the second step of a
method for determining the spatial locations of the
helices of a transmembrane protein. In the first step,
the discrete conformational space is reduced to hun-
dreds or even thousands of candidate helical bundles
to be used as the starting points in the second step,
minimizing (1). In order to attain a small number of
final candidates for further study, we require a fast
and efficient optimization method capable of further
refining the results of step one.
Finally, it should be noted that the Bundler scor-

ing function incorporates helix packing parameters
defined using a very small sample (16 nonredundant
proteins) of transmembrane helical bundles. Until this
set can be dramatically increased, we do not neces-
sarily expect Bundler to identify the true (or native)
structure as the structure with the absolute lowest
score. Instead, we have designed the Bundler scoring
function to serve as an empirical measure for differ-
entiating between groups of bundles that are far from
the native structure from those that are near. It is still
unclear to us how low the Bundler score of a struc-
ture must be in order for that structure to be of use
in our process of protein structure determination. We
believe that the threshold of useful scores will vary
from protein to protein and thus must be determined
empirically.

4. Optimization Methods
Because the Bundler scoring function is nonsmooth
and contains discontinuities, we have chosen to
apply derivative-free methods to obtain a solution
to (1). Although we focus on two particular methods
here, there are many other derivative-free methods;
see for example, Powell (1998), Kolda et al. (2003)
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and references therein. Moreover, finite differencing
could be used to approximate the gradient so that
we could use derivative-based methods. However,
because Bundler is discontinuous and directly incor-
porates noisy experimental distance constraints, such
approximations may contain too much error to be
useful (Hough and Meza 2002). In this paper, we
present results using simulated annealing and parallel
pattern search, described below.

4.1. Simulated Annealing
Simulated annealing (SA) is arguably the most widely
used optimization method for molecular conforma-
tion problems. For just a few of the many examples of
the use of simulated annealing in computational biol-
ogy, see Ghosh et al. (2002), Perkins and Dean (1993),
Campbell et al. (1998), Goodsell and Olson (1990),
Brünger et al. (1997). The SA algorithm is a compu-
tational analogue to the industrial annealing process
in which metal alloys are slowly cooled to obtain an
optimal molecular configuration. This controlled cool-
ing process is very important because a less stable
configuration is obtained when the alloy is cooled too
quickly. Computationally, annealing is implemented
by allowing optimization steps that do not necessarily
reduce the objective function. The idea is that a few
bad steps can be accepted in order to get on the best
path to the solution.
The SA algorithm is based on the Metropolis

method (Metropolis et al. 1958) of obtaining the equi-
librium configuration of a group of atoms at a given
temperature. A connection between the Metropolis
method and Monte Carlo simulation was first
described in Pincus (1970). The simulated annealing
optimization technique that is used today was pro-
posed in Kirkpatrick et al. (1983). It begins with a
Metropolis Monte Carlo simulation at a high temper-
ature. After a sufficient number of Monte Carlo steps
have been taken, the temperature is reduced and the
Metropolis Monte Carlo is continued. This process is
repeated until a specified final temperature is reached.
At high temperatures, a relatively large number of
random steps will be accepted, and, as the tempera-
ture decreases, fewer steps are accepted.
The main advantage of SA over other optimization

methods is that it is global. In theory, the algorithm
can avoid becoming trapped in bad local minima
regardless of its starting point. Furthermore, SA is
easy to implement. Unfortunately, SA also has many
well-documented disadvantages. It requires extensive
computational work (van Laarhoven and Aarts 1987,
Moret and Shapiro 1991, Aarts et al. 1997, Elmohamed
et al. 1998), and it is sensitive to the choices of its
many parameters (Elmohamed et al. 1998, Piccioni
1987, Stiles 1994, Aarts et al. 1997, Randelman and
Grest 1986, van Laarhoven and Aarts 1987). For exam-
ple, there are at least a dozen different temperature

cooling schedules from which to choose (Kirkpatrick
et al. 1983, Geman and Geman 1984, van Laarhoven
and Aarts 1987, Salamon et al. 2002). Finally, because
the steps in SA are taken randomly, the algorithm
does not employ any knowledge gained in previous
iterations (Ali and Storey 1997).
Because SA is the method of choice in the computa-

tional biology community and because it is also easy
to implement, it was the first optimizer that we tried.
In our implementation of SA, we use the geometric
annealing schedule,

Tnew = �Told� (11)

where � = 0 95 We selected this schedule on the
basis of numerical experiments, and our selection is
supported by Johnson et al. (1989, 1991). The initial
temperature and number of temperature cycles were
chosen independently for each of the numerical tests
presented in this paper. Each temperature cycle is ter-
minated after either 1�000 structures are generated or
100 structures are accepted. New structures are gen-
erated as follows: First, one of the helices is randomly
selected. Then, starting from the arrangement of the
last accepted structure, the position of the selected
helix is randomized either by translating it or by rotat-
ing it around the x and y or the z axis. The type
and amount of randomization are randomly chosen
within a user defined maximum.
Our SA algorithm is implemented in C and uses

the PDB Record I/O Libraries to read and write
Brookhaven PDB formatted files (Couch et al. 1995).
Our implementation of SA is serial. Although some
parallelized versions exist (Kliewer and Tschöke 1998,
Stiles et al. 1989, Lee 1995), none are compatible
with MPI libraries such as MPICH-1.2.4 (Gropp et al.
1996, Gropp and Lusk 1996). We chose to use a basic
implementation of SA but note that there are many
sophisticated variations. For example, reannealing has
been shown to be effective by adapting to changes
in parameter sensitivities when the search becomes
trapped (Ingber 1989, 1993). Other adaptive and mul-
tistart modifications of SA have also been shown to be
successful (Piccioni 1987, Stiles 1994, Ali and Storey
1997, Salamon et al. 2002).

4.2. Asynchronous Parallel Pattern Search
To contrast SA, we opted to apply an algorithm from a
completely different class of optimization methods—
pattern searches. Because this class of methods is gen-
erally overlooked in computational biology, we were
particularly interested in examining its applicability
and performance.
Pattern search methods are practical for solving

problems such as (1) when the derivative of the
objective function is unavailable and approximations
are unreliable. They use a predetermined pattern of
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points to sample the given function domain. When
certain requirements on the form of the points in
the pattern are followed, it can be shown that if the
objective function is smooth, global convergence to
a stationary point is guaranteed (Dolan et al. 2000,
Lewis and Torczon 1996, Torczon 1997). Bundler, our
objective function, is not smooth, but further analysis
reveals that pattern search may still find a minimum
even for nonsmooth functions (Kolda et al. 2003).
We also note that pattern search methods are typi-
cally used for optimization problems with fewer than
100 variables (Kolda et al. 2003). Most transmembrane
proteins have fewer than 13 helices, and we are inter-
ested in proteins that have 12 or fewer. Hence, the
transmembrane protein structure determination prob-
lem that we consider contains at most 72 variables,
and pattern search is a reasonable choice.
The majority of the computational cost of pattern

search methods is in the function evaluations, so
parallel pattern search (PPS) techniques have been
derived to reduce the overall computational time.
Specifically, PPS exploits the fact that, once the points
in the search pattern have been defined, the func-
tion values at these points can be computed simul-
taneously (Dennis and Torczon 1991, Torczon 1992).
The particular implementation of PPS that we use is
asynchronous. Asynchronous parallel pattern search
(APPS) (Kolda and Gray 2004) retains the positive fea-
tures of PPS, but it does not assume that the amount
of time required for an objective function evaluation
is constant or that the processors are homogeneous.
It does not have any required synchronizations and
thus requires less total time than PPS to return results
(Hough et al. 2001). Furthermore, it has been shown
that APPS is globally convergent under the stan-
dard assumptions for PPS (Kolda and Torczon 2004).
Finally, there is an existing open source version of
APPS, called APPSPACK, which is easy to install and
use (Kolda and Gray 2004).
APPSPACK is available in MPI, PVM, and serial

modes. To make use of the parallel machines at our
disposal, we opted to use theMPI mode of APPSPACK
version 3.0. This mode and version requires a mini-
mum of three processors: one master agent to coor-
dinate the search, one cache agent to save and look
up points at which the function has already been
evaluated, and at least one worker to perform func-
tion evaluations. For our problem, the use of cache
is particularly advantageous as it should reduce
the required number of new function evaluations
and increase algorithm efficiency. The default MPI
version of APPSPACK requires that the function eval-
uations be run as separate executables and communi-
cates with the worker tasks via file input and output.
In our case, we customized APPSPACK to avoid the

overhead of system calls and file I/O and improve
overall efficiency.
We found that APPS required almost no tuning. We

used the default values for all the parameters except
the convergence tolerance, which was set to be 0 01 
The default tolerance of 10−4 is small with respect to
the variable sensitivity in our application, and thus
we increased it in order to reduce the number of func-
tion evaluations required to obtain convergence. We
also note that our implementation uses the coordinate
direction search pattern.

5. Numerical Results
In this section, we present numerical results ob-
tained using experimental distance constraints for
rhodopsin. Rhodopsin is a transmembrane protein
that is located in the retinal rods of the eye, and it
plays a role in vision. It is a G-protein-coupled recep-
tor made up of 7 transmembrane helices and thus
has 42 variables in its structure determination prob-
lem. The 3-D structure of the dark-adapted form of
rhodopsin is known, having been determined using
x-ray crystallography (Palczewski et al. 2000). More-
over, a set of experimental distance constraints for
dark-adapted rhodopsin has been compiled in Yeagle
et al. (2001) making it an appropriate test case for
our numerical experiments. In this paper, we use the
structure of rhodopsin determined in Palczewski et al.
(2000), PDB entry 1F88, as the true structure. Because
we are using a known structure, we can compute the
difference between the true structure and any other
structure using RMSD computed across the C� atoms.
Although we cannot use RMSD when trying to ascer-
tain structures that have not yet been determined, we
use it in our study to add clarity to the comparisons.

5.1. Motivation
We begin by presenting a simple example that moti-
vated this study. Here, we use only one starting point,
which was obtained by randomizing the true struc-
ture of rhodopsin. The subsequent starting structure
has an initial Bundler score of 11�342 and an RMSD
of 15 0 We first tried optimizing this structure using
our SA algorithm. After extensive tuning, the best
structure we were able to produce resulted from using
a starting temperature of 500 and 290 temperature
cycles. This structure has a final Bundler score of 377
and an RMSD of 4 5 Next, we applied the APPS
algorithm. On our first try, we were able to produce
a structure with a score of 122 and an RMSD 3 4 
Figure 3 contains two pictures that illustrate the spa-
tial positions of the helices relative to the known
structure. In both pictures, the light gray cylinders
represent the � helices of dark-adapted rhodopsin.
In picture (a), on the left, the dark cylinders depict the
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(a) Simulated Annealing (b) APPS

Figure 3 Comparison of the True and Calculated Locations of the Helices of Dark-Adapted Rhodopsin

locations of the helices found using simulated anneal-
ing. Picture (b), on the right, shows the helices’ loca-
tions determined by APPS as the dark cylinders. Note
that APPS determines the orientation of all seven
helices relatively well. In contrast, two of the helices
determined by SA are a poor match.
We also examined the computational efficiency

of each method. As previously discussed, SA often
requires extensive computational work. This example
was no exception. The SA algorithm required 81�800
function evaluations and 61 hours of run time on
a single processor. In comparison, the APPS algo-
rithm required only 32�458 function evaluations and
17 minutes of run time on 86 processors. It is diffi-
cult to compare the two algorithms directly because
SA is serial and APPS is parallel. However, we can
note that APPS required fewer total function evalu-
ations than SA. Moreover, if SA were parallelized in
the most efficient manner possible and run on 86 par-
allel processors, it would still take almost 45 minutes
to obtain a solution.
This result led us to pursue a more thorough eval-

uation. We now present this study and its results.

5.2. Numerical Study
For our numerical study, 87 starting structures were
selected from 7 0× 1013 possible candidates using the
procedure described in detail in Faulon et al. (2003)
and a set of 27 distance constraints, �1, obtained from
Yeagle et al. (2001). This procedure resulted in struc-
tures that have no experimental distance penalty, i.e.,
PE = 0� where PE is as defined in (3), for each of the 87
structures with respect to �1 To fully test the capabil-
ities of the optimization methods, we use a different
set of distance constraints, �2 The set �2 contains

upper and lower bounds for the same 27 pairs of
atoms as �1� but the range of these bounds is tighter
as detailed in Yeagle et al. (2001), Sale et al. (2004).
The average Bundler score of the starting structures
is 26�555 with a maximum of 76�080 and a minimum
of 8�608 The distribution of these scores is shown in
Figure 4.
To optimize the 87 structures, we first applied our

SA algorithm with a starting temperature of 300 and
125 temperature cycles. Next, we applied APPS to the
same set of 87 starting structures. The results of this
test set are displayed in Figure 5 and summarized
in Figure 6. Note that APPS produces a much wider
range of final scores than SA, and it appears that with
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Figure 5 Final Bundler Scoring Distribution for SA (Left) and APPS (Right)

APPS, some of starting structures get stuck in bad
local minima. In contrast, the majority of the scores
achieved by SA are below 200 and in fact, 40 of the
87 structures differ by less than six Bundler points.
We can conclude that overall, this implementation

of SA more effectively reduces the Bundler score. How-
ever, recall the aim of this particular project: to pro-
duce at least one structure with an empirically low
score as efficiently as possible. In considering this
goal, the fact that SA produced more structures with
low scores does not necessarily give it an edge over
APPS. The APPS algorithm does yield some struc-
tures with low scores. Further study showed that for
each SA structure with a score of less than 200� there
is at least one APPS structure with a score of less
than 200 such that its RMSD with respect to the SA
structure is less than three. Given the errors in the
distance constraints, we can therefore conclude that
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Figure 6 Summary of the Final APPS and SA Bundler Values (Left) and Required Number of Function Evaluations (Right)

SA and APPS are finding the same minima. Further-
more, as Figure 6 shows, the computational cost of the
success of SA is quite high. Each structure requires
a minimum of 49�500 function evaluations to pro-
duce a solution. In comparison, the maximum num-
ber of function evaluations needed by APPS is 48�812,
and 24 of the runs required fewer than 20�000 eval-
uations. Therefore, we conclude that APPS more effi-
ciently reduces the Bundler scoring function. In fact,
APPS is better suited than this implementation of SA
for our transmembrane protein structure determina-
tion problem.
Next, we decided to more closely examine our

implementation of SA to see if there was a simple
way of improving the efficiency of SA without sac-
rificing too much of its effectiveness. One way of
reducing the number of SA function evaluations is
reducing the number of temperature cycles. We use
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Figure 7 Summary of the Final APPS and SA2 Bundler Values (Left) and Required Number of Function Evaluations (Right)

SA2 to denote the SA algorithm terminated after only
60 temperature cycles, or approximately one third of
the number of function evaluations of the previous
implementation. The results of this comparison are
shown in Figure 7. The APPS and SA2 algorithms
obtain solutions to problem (1) for the 87 different
starting points in a similar number of function eval-
uations. An RMSD comparison of the structures with
scores less than 200 showed that SA2 and APPS find
the same minima. Hence, for our problem, both SA2
and APPS achieve our goals. The SA2 algorithm is
less effective than SA at reducing the scoring function,
but it still produces structures with a low Bundler
score, and it is more efficient than SA. The explicit
distribution of the final SA2 Bundler scores is shown
in Figure 8. The average final Bundler score is 306
with a maximum of 1�883 and a minimum of 132. The
results of this test allowed us to conclude that APPS is
indeed a practical choice for our problem and that it
is competitive with simulated annealing, the method
of choice in the computational biology community.
For our final test, we tried to reduce the number

of SA temperature cycles by using a lower starting
temperature. Here, we use an initial temperature of
30 and do 75 temperature cycles. By beginning with
a lower temperature, we will not accept as many ran-
domized steps and thus we are, in effect, doing a
more localized search. We use SA3 to denote this algo-
rithm and summarize its results in Figure 9. Although
SA3 still requires fewer function evaluations than
SA, it does not successfully produce structures with
low Bundler scores. None of the SA3 final scores are
below 275� and, in fact, only two structures have
scores below 300 The final Bundler score distribution
for SA3 is given in Figure 10, and the average final
Bundler score is 561 with a maximum of 2�386 and
a minimum of 274 In addition, SA3 is overall less

efficient than both the SA2 and the APPS algorithms.
Therefore, we can conclude that the simulated anneal-
ing algorithm using these particular parameters, a low
initial temperature and a small number of tempera-
ture cycles, is not a viable alternative for solving our
problem.

6. Conclusions
In this paper, we discuss the transmembrane pro-
tein structure identification problem. In particular, we
focus on the second step of an innovative two-step
method that combines laboratory and computational
techniques (Faulon et al. 2003, Sale et al. 2004) to
determine the spatial locations of the transmembrane
helices. This second step refines a large set of possible
helical bundles, generated in step one, by optimiz-
ing an empirical scoring function known as Bundler.
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The optimization of Bundler raises the question of
finding an appropriate minimization algorithm.
Because Bundler is a discontinuous function that

incorporates noisy experimental data, we opted to
use a derivative-free method. We considered two
very different algorithms: SA and APPS. The SA
algorithm imitates an industrial cooling process and
uses Metropolis Monte Carlo to generate new points.
In contrast, APPS is a pattern search method that uses
a predetermined pattern of points to sample a given
function domain. In testing these methods, we had to
consider the goal of our project: identifying at least
one structure with a Bundler score low enough to
warrant further study. Because Bundler was designed
using only a small set of transmembrane proteins and
inexact laboratory data, a high level of accuracy is
neither expected nor desired from the optimization.
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However, efficiency is important as hundreds or even
thousands of structures must be optimized. Therefore,
we were looking for an optimization method that is
both efficient and sufficiently accurate.
Given the numerous variations of the SA algo-

rithm and the number of documented successes using
SA, we are confident that we could eventually find
a suitable version of the SA algorithm to solve our
transmembrane protein structure determination prob-
lem. In fact, we have demonstrated that the SA2
implementation is sufficient for identifying the heli-
cal placement of rhodopsin. However, it is unclear
whether or not this algorithm would be sufficient for
a general transmembrane protein or if its parameters
would be biased for certain proteins. We must also
consider the fact that the Bundler scoring function
will likely undergo a series of minor improvements,
and we do not want any of these small changes to
require that the optimization algorithm be retuned.
To our knowledge, APPS has not been previously

applied to a problem of protein structure determina-
tion. We did not encounter any difficulties in apply-
ing it to our transmembrane protein problem. In fact,
on our first try, we were able to produce desirable
results. Moreover, in light of our efficiency and accu-
racy specifications, APPS was superior to both our SA
and the SA3 algorithms and was comparable to our
SA2 algorithm.
Despite their similar performance, APPS still has

two implicit advantages over our SA2. First, APPS is
easy to fine tune. Note that SA2 is exactly the same as
our original SA algorithm with the exception of one
small change to one parameter. However, the results
obtained from these two algorithms are significantly
different. Choosing the total number of temperature
cycles is difficult. We must complete enough cycles to
sufficiently reduce the Bundler score but not so many
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as to ignore our efficiency requirements. This is of
concern to us because we will be using different sets
of distance constraints and making minor changes to
the Bundler scoring function. Second, because it is
parallel, APPS will require less wall-clock time for
problems with a large number of starting structures.
Therefore, we have chosen to use APPS as the opti-
mizer for this problem.
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