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Abstract—COMET is a single-pass MapReduce algorithm
for learning on large-scale data. It builds multiple random
forest ensembles on distributed blocks of data and merges
them into a mega-ensemble. This approach is appropriate when
learning from massive-scale data that is too large to fit on a
single machine. To get the best accuracy, IVoting should be
used instead of bagging to generate the training subset for
each decision tree in the random forest. Experiments with two
large datasets (5GB and 50GB compressed) show that COMET
compares favorably (in both accuracy and training time) to
learning on a subsample of data using a serial algorithm.
Finally, we propose a new Gaussian approach for lazy ensemble
evaluation which dynamically decides how many ensemble
members to evaluate per data point; this can reduce evaluation
cost by 100X or more.

Keywords-MapReduce; Decision Tree Ensembles; Lazy En-
semble Evaluation; Massive Data

I. INTRODUCTION

The integration of computer technology into science and
daily life has enabled the collection of massive volumes
of data. However, this information cannot be practically
analyzed on a single commodity computer because the
data is too large to fit in memory. Examples of such
massive-scale data include website transaction logs, credit
card records, high-throughput biological assay data, sensor
readings, GPS locations of cell phones, etc. Analyzing
massive data requires either a) subsampling the data down
to a size small enough to be processed on a workstation; b)
restricting analysis to streaming methods that sequentially
analyze fixed-sized subsets; or c) distributing the data across
multiple computers that perform the analyses in parallel.
While subsampling is a simple solution, the models it
produces are often less accurate than those learned from
all available data [1], [2]. Streaming methods benefit from
seeing all data but typically run on a single computer, which
makes processing large datasets time consuming. Distributed
approaches are attractive because they can exploit multiple
processors to construct models faster.

In this paper we propose to learn quickly from massive
volumes of existing data using parallel computing and a
divide-and-conquer approach. The data records are evenly
partitioned across multiple compute nodes in a cluster, and
each node independently constructs an ensemble classifier
from its data partition. The resulting ensembles (from all
nodes) form a mega-ensemble that votes to determine clas-
sifications. The complexities of data distribution, parallel
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computation, and resource scheduling are managed by the
MapReduce framework [3]. In contrast to many previous
uses of MapReduce to scale up machine learning that require
multiple passes over the data [4]–[9], this approach requires
only a single pass (single MapReduce step) to construct the
entire ensemble. This minimizes disk I/O and the overhead
of setting up and shutting down MapReduce jobs.

Our approach is called COMET (short for Cloud Of
Massive Ensemble Trees), which leverages proven learning
algorithms in a novel combination. Each compute node
constructs a random forest [10] based on its local data.
COMET employs IVoting (importance-sampled voting) [11]
instead of the usual bagging [12] to generate the training
subsets used for learning the decision trees in the random
forest. Chawla et al. [13] showed that IVoting produces more
accurate ensembles than bagging in distributed settings.
IVoting Random Forests combine the advantages of random
forests (good accuracy on many problems [14], [15] and
efficient learning with many features [10]) with IVoting’s
ability to focus on more difficult examples. The local
ensembles are combined into a mega-ensemble containing
thousands of classifers in total. Using such a large ensemble
is computationally expensive and overkill for data points that
are easy to classify. Thus, we employ a lazy ensemble eval-
uation scheme that only uses as many ensemble members
as are needed to make a confident prediction. We propose a
new Gaussian-based approach for Lazy Ensemble Evaluation
(GLEE) that is easier to implement and more scalable than
previously proposed approaches.

Our main contributions are as follows:
• We present COMET, a novel MapReduce-based

framework for distributed Random Forest ensemble
learning. Our method uses a divide-and-conquer ap-
proach for learning on massive data and requires only a
single MapReduce pass for training, unlike recent work
using MapReduce to learn decision tree ensembles [7].
We also use a sampling approach called IVoting rather
than the usual bagging technique.

• We develop a new approach for lazy ensemble
evaluation based on a Gaussian confidence interval,
called GLEE. GLEE is easier to implement and asymp-
totically faster to compute than the Bayesian approach
proposed by Hernández-Lobato et al. [16]. Simulation
experiments show that GLEE is as accurate as the
Bayesian approach.

• Applying COMET to two publicly available datasets
(the larger of which contains 200M examples), we



demonstrate that using more data produces more
accurate models than learning from a subsample
on a single computational node. Our results also
confirm that the IVoting sampling strategy significantly
outperforms bagging in the distributed context.

II. LEARNING ON MASSIVE DATA VIA COMET

COMET is a recipe for large-scale distributed ensemble
learning and efficient ensemble evaluation. The recipe has
three components:

1) MapReduce: We write our distributed learning algo-
rithm using MapReduce to easily parallelize the learn-
ing task. The mapper tasks build classifiers on local
data partitions (“blocks” in MapReduce nomenclature),
and one or more reducers can combine together and
output the classifiers. The learning phase only takes a
single MapReduce job. If the learned ensemble is large
and/or the number of data points to be evaluated is
large, evaluation can also be parallelized using at most
two MapReduce jobs.

2) IVoting Random Forest: Each mapper builds an en-
semble based on its local block of data (assigned by
MapReduce). The mapper runs a variant of random
forests that replaces bagging with IVoting (described
in II-B). IVoting has the advantage that it gives more
weight to difficult examples. Unlike boosting [17],
however, each model in the ensemble votes with equal
weight, allowing us to trivially merge the ensembles
from all mappers into a single large ensemble.

3) Lazy Ensemble Evaluation: Many inputs are “easy”
and the vast majority of the ensemble members agree
on the classification. For these cases, querying a small
sample of the members is sufficient to determine the
ensemble’s prediction with high confidence. Lazy en-
semble evaluation significantly lowers the prediction
time for ensembles.

The rest of this section describes these three components in
more detail.

A. Exploiting MapReduce for Distributed Learning

We take a coarse-grained approach to distributed learning
that minimizes communication and coordination between
compute nodes. We assume that the training data is par-
titioned randomly into blocks in such a way that class
distributions are roughly the same across all blocks. Such
shuffling can be accomplished in a simple pre-processing
step that maps each data item to a random block.

In the learning phase, each mapper independently learns
a predictive model from an assigned data block. The learned
models are aggregated together into a final ensemble model
by the reducer. This is the only step that requires internode
communication, and only the final models are transmitted
(not the data). Thus, we only require a single MapReduce
pass for training.

We implement the above strategy in the MapReduce
framework [3] because the framework’s abstractions match
our needs, although other parallel computing frameworks
(e.g., MPI) could also be used. To use MapReduce, one
loads the input data into the framework’s distributed file
system and defines map and reduce functions to process key-
value pair data during Map and Reduce stages, respectively.
Mappers execute a map function on an assigned data block
(usually read from the node’s local file system). The map
function produces zero or more key-value pairs for each
input; in our case, the values correspond to learned trees
(with random keys). During the Reduce stage, all the pairs
emitted during the Map stage are grouped by key and passed
to reducer nodes that run the reduce function. The reduce
function receives one key and all the associated values
produced by the Map stage. Like the map function, the
reduce function can emit any number of key-value pairs.
Resulting pairs are written to the distributed file system.
The MapReduce framework manages data partitioning, task
scheduling, data replication, and restarting from failures. The
reducer(s) write the learned trees to one or more output files.

The map and reduce functions for distributed ensemble
learning are straightforward. The map function trains an
ensemble on its local data block and then emits the learned
trees. Each tree is emitted with a random key to automati-
cally partition the ensemble across the reducers.

B. IVoting Random Forests for Mega-Ensembles

Each mapper in COMET builds an ensemble from the
local data partition using IVoting. IVoting (Importance-
sampled Voting) [11] builds an ensemble by repeatedly
applying the base learning algorithm (e.g., decision tree
induction [18], [19]) to small samples called bites. Unlike
bagging [12], examples are sampled with non-uniform prob-
ability. Suppose that k IVoting iterations have been run,
producing ensemble Ek comprised of k base classifiers. To
form the k + 1st bite, training examples (x, y) are drawn
randomly. If Ek incorrectly classifies x, (x, y) is added to
training set Bk+1. Otherwise (x, y) is added to Bk+1 with
probability e(k)/(1 − e(k)), where e(k) is the error rate
of Ek. This process is repeated until |Bk+1| reaches the
specified bite size b; b is typically smaller than the size of the
full data. Out-of-bag (OOB) [20] predictions are used to get
unbiased estimates of e(k) and Ek’s accuracy on sampled
points x. The OOB prediction for x is made by voting only
the ensemble members that did not see x during training,
i.e., x was outside the base models’ training sets.

IVoting’s sequential and weighted sampling is reminiscent
of boosting [17] and is similar to boosting in terms of
accuracy [11]. IVoting differs from boosting in that each base
model receives equal weight for deciding the ensemble’s
prediction. This property simplifies merging the multiple
ensembles produced by independent IVoting runs.



Breiman [11] showed that IVoting sampling generates
bites containing roughly half correct and half incorrect
examples. Our implementation (Algorithm 1) draws, with
replacement, 50% of the bite from the examples Ek cor-
rectly classifies and 50% from the examples Ek incorrectly
classifies (based on OOB predictions). This implementation
avoids the possibility of drawing and rejecting large numbers
of correct examples for ensembles with very high accuracy.

Algorithm 1: IVoting — Ensemble learning that samples
correct & incorrect examples in equal proportions.

Input: Dataset D ∈ (X ,Y)∗; Ensemble size m; Bite size
b ∈ N; Base learner L : (X ,Y)∗ → (X → Y)

Output: Ensemble E
Initialize D+

0 = D, D−
0 = D, Voob[·, ·] = 0, E = ∅;

for i ∈ [1,m] do
// Create the bite to train on.
B+

i = b/2 uniform random samples from D+
i−1;

B−
i = b/2 uniform random samples from D−

i−1;
Bi = B+

i +B−
i ;

// Train a new ensemble member.
Ti = L(Bi);
Add Ti to E;
// Update running votes.
for (xj , yj) /∈ Bi do

Voob[j, Ti(xj)] += 1;

D+
i = {(xj , yj) ∈ D | yj = arg maxzVoob[j, z]};

D−
i = {(xj , yj) ∈ D | yj 6= arg maxzVoob[j, z]};

return E;

Any classification learning algorithm could be used for the
base learner in IVoting. Our experiments use decision trees
[19], [21] because they generally form accurate ensembles
[22]. The trees are grown to full size (i.e., each leaf is pure or
contains fewer than ten training examples) using information
gain as the splitting criterion. We use full-sized trees because
they generally yield slightly more accurate ensembles [22].
To increase the diversity of trees and reduce training time
for data sets with large numbers of features, only a random
subset of features are considered when choosing the test
predicate for each tree node. This attribute subsampling is
used in random forests and has been shown to improve
performance and decrease training time [10]. We employ the
random forest heuristic for choosing the attribute sample size
d′ = b1+ log2 dc, where d is the total number of attributes.

C. Lazy Ensemble Evaluation via a Gaussian Approach

A major drawback to large ensembles is the cost of query-
ing all ensemble members for their predictions. In practice,
many data points are easy to classify: the vast majority of
the ensemble members agree on the classification. For these
cases, querying a small sample of the members is sufficient
to determine the ensemble’s prediction with high confidence.

We exploit this phenomena via lazy ensemble evaluation.
Lazy ensemble evaluation is the strategy of only evaluating

as many ensemble members as needed to make a good
prediction on a case by case basis for each data point.
Ensemble voting is stopped when the “lazy” prediction has
high probability of being the same as the prediction from
the entire ensemble. The risk that lazy evaluation stops
voting too early (i.e., the probability that the early prediction
is different from what the full ensemble prediction would
have been) is bounded by a user-specified parameter α.
Algorithm 2 lists the lazy ensemble evaluation procedure.
Let x be a data point to classify using ensemble E, with E
containing m base models. Initially all m models are in the
unqueried set U . In each step, a model T is randomly chosen
and removed from U to vote on x; the vote is added to the
running tallies of how many votes each class has received.
Based on the accumulated tallies and how many ensemble
members have not yet voted, the stopping criterion decides
if it is safe to stop and return the classification receiving
the most votes. If it is not safe, a new ensemble member
is drawn, and the process is repeated until it is safe to stop
or all m ensemble members have been queried. Note that
lazy evaluation is agnostic to whether the base models are
correlated. Its goal is to approximate the (unmeasured) vote
distribution from a sample of votes, and the details of the
process generating the votes are irrelevant.

Algorithm 2: Lazy Ensemble Evaluation
Input: Input x ∈ X
Input: Ensemble E with m members of f : X → {1, ..., c}
Input: α, max. disagreement freq. for lazy vs. full eval.
Input: Vote stopping criteria

Stop : (Nc
0,N1,R ∈ [0, 1])→ {true, false}

Output: Approximate prediction from E for input x.
Set U = E, V = [0, ..., 0], |V | = c;
for i ∈ [1,m] do

Sample T uniformly from U ;
Remove T from U ;
Evaluate vi = T (x);
Increment V [vi];
if Stop(V,m, α) then

return argmaxi V [i];

return argmaxi V [i]

In binary categorization, the vote of each base model can
be modeled as a Bernoulli random variable. Accordingly,
the distribution of votes for the full ensemble is a binomial
distribution with proportion parameter p. Provided that the
number of members queried is sufficiently large, we can
invoke the Central Limit Theorem and approximate the
binomial distribution with a Gaussian distribution.

We propose Gaussian Lazy Ensemble Evaluation (GLEE),
which uses the Gaussian distribution to infer a (1 − α)
confidence interval around the observed mean p̂. The interval
is used to test the hypothesis that the unobserved proportion
of positive votes p falls on the same side of 0.5 as p̂ (and
consequently, that the current estimated classification agrees



with the full ensemble’s classification). If 0.5 falls outside
the interval, GLEE rejects the null hypothesis that p and
p̂ are on different sides of 0.5 and terminates voting early.
Formally, denote the interval bounds as p̂± ρδ, where

δ = zα/2
σ√
n
= zα/2

√
p̂(1− p̂)√

n

and

ρ =

{√
m−n
m−1 if n > 0.05m

1 otherwise.

The critical value zα/2 is the usual value from the standard
normal distribution. The finite population correction (FPC) ρ
accounts for the fact that base models are drawn from a finite
ensemble. Intuitively, uncertainty about p shrinks as the set
U becomes small. To ensure the Gaussian approximation
is reasonable, GLEE only stops evaluation only once some
minimum number of models have voted. Using simulation
experiments we found 15, 30, and 45 reasonable for α ≥
10−2, α = 10−3, and α = 10−4, respectively. (Simulation
methodology is described in Section III.)

The above hypothesis test only requires the lower bound
(if p̂ > 0.5) or the upper bound (if p̂ < 0.5). Consequently
we can improve GLEE’s statistical power by computing a
one-sided interval; i.e., use zα instead of zα/2. When the
GLEE stopping criteria is invoked, the leading class (the
class with the most votes so far) is treated as class 1, and the
runner-up class is treated as class 0.1 GLEE stops evaluation
early if the lower bound p̂− δ is greater than 0.5.2

Hernández-Lobato et al. [16] present another way of
deciding when to stop early using Bayesian inference. We
compare to this method in Section III and refer to it as
Madrid Lazy Ensemble Evaluation (MLEE). In MLEE, the
distribution of vote frequencies for different classes is mod-
eled as a multinomial distribution with a uniform Dirichlet
prior. The posterior distribution of the class vote proportions
is updated at each evaluation step to reflect the observed
base model prediction. MLEE computes the probability
that the final ensemble predicts class c by combinatorially
enumerating the possible prediction sequences for the as-yet
unqueried ensemble members, based on the current posterior
distribution. Like GLEE, ensemble evaluation stops when
the probability of some class exceeds the specified confi-
dence level or when all base models have voted. MLEE is
exponential in the number of classes but is O(m2) for binary
classification (m ensemble members), and approximations
exist to make it tractable for some multi-class problems [23].

1This class relabeling trick also enables direct application of GLEE to
multiclass problems.

2This one-sided test is slightly biased because the procedure effectively
chooses to compute a lower or upper bound after “peeking” at the data to
determine which class is the current majority class. The results in Section III
show that the relative error of the lazy prediction is bounded by α despite
this bias.

D. Lazy Evaluation in a Distributed Context

Large ensembles (too large to fit into memory) can
make predictions on massive data (also too large to fit
into memory) using lazy committee evaluation. Each input
is first evaluated by a sub-committee—a random subset
of the ensemble small enough to fit in memory—using
a lazy evaluation rule. In most cases, the sub-committee
will be able to determine the ensemble’s output with high
confidence and output a decision. In the rare cases where
the sub-committee cannot confidently classify the input, the
input is sent to the full ensemble for evaluation.

Lazy committee evaluation requires two MapReduce jobs.
In the first job each mapper randomly chooses and reads one
of the p ensemble partitions to be the local sub-committee
and lazily evaluates the sub-committee on the mapped test
data it receives; only one test input needs to be in memory
at a time. If the sub-committee reaches a decision, the
input’s identifier and label are written directly to the file
system. Otherwise, a copy of the input is written to each of
p reducers by using keys 1, 2, . . . , p. In the reduce stage,
each reducer reads a different ensemble partition so that
every base model votes exactly once. Reducers output the
vote tallies for each input they read, keyed on the input
identifier. The second job performs an identity map with
reducers that sum the vote tallies for each input; reducers
output the class with the most votes keyed to the input’s
identifier. Combining the two sets of label outputs, from the
first map and second reduce, provides a label for every input.

III. COMPARISON OF LAZY EVALUATION RULES

This section explores the efficacy of the GLEE rule across
a wide range of ensemble sizes and for varying confidence
levels. We simulate votes from large ensembles to explore
the rule’s behavior and to compare it to the MLEE rule.

The stopping thresholds for both methods are pre-
computed and stored in a table that is indexed by the
number of votes received by the leading class. One table
is needed per ensemble size m. Pre-computing and caching
the thresholds is necessary to make MLEE practical for large
ensembles. Once the thresholds are computed, evaluating
them requires an array lookup and comparison.

Computing the large factorials in MLEE requires care to
avoid numerical overflow. Martı́nez-Muñoz et al. [23] sug-
gest representing numbers in their prime factor decomposi-
tion to avoid overflow; this approach requires O(m3/ logm)
time to compute the table.3 We instead compute the factori-
als for MLEE in log-space which produces the same results
and requires O(m2) total complexity. In comparison, com-
puting the threshold table for GLEE takes O(m) time. This
difference is significant for very large ensembles (Table I).

3By the Prime Number Theorem, there are O(m/ logm) prime numbers
less than m. Thus, operations on numbers represented by prime factors take
O(m/ logm) time. These operations are inside two nested O(m) loops.
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Figure 1. Lazy ensemble evaluation drastically reduces the cost of evaluating large ensembles and introduces predictable, small relative error. Graphs
show five variants of lazy evaluation rules applied to simulated ensembles (see text). The rules are Madrid (MLEE), G1 (Gaussian one-tail), G2 (Gaussian
two-tail), G1-FPC (G1 with finite population correction) and G2-FPC (G2 with finite population correction). All five methods provide similar speed-ups
for ensembles with 500 members or more, with G1-FPC and Madrid requiring slightly fewer votes than the others. The relative errors of G1-FPC and
Madrid rules are nearly identical.

Table I
TIME TO PRE-COMPUTE STOPPING THRESHOLDS

Ensemble Size
100 1K 10K 100K 200K 1M

GLEE 1ms 1ms 3ms 12ms 17ms 57ms
MLEE 4ms 38ms 2.35s 2.76m 10.12m 3.70h

Ensemble votes are simulated as follows. A uniform
random number p ∈ [0, 1] is generated to be the proportion
of ensemble members that vote for class 1. The correct label
for the example is 1 if p ≥ 0.5 and 0 otherwise. Each
model in the ensemble votes by sampling from a Bernoulli
random variable with probability Pr(x = 1) = p. The
ensemble is evaluated until the stopping criterion is satisfied
or all m ensemble members have voted. The lazy predictions
under the different stopping rules and the prediction from
evaluating the full ensemble are compared to the correct
label to determine their relative accuracies. This process is
repeated 1 million times to simulate making predictions for
1 million data points.

We report the results in terms of the average fraction of
the ensemble evaluated before lazy evaluation stopped and
relative error. Relative error is the relative increase in error
rate from lazy evaluation (i.e., 1 - lazy accuracy

full accuracy ).
Figure 1a compares five approaches to lazy ensemble eval-

uation. The five different approaches are Madrid (MLEE),
G1 (Gaussian one-tail), G2 (Gaussian two-tail), G1-FPC (G1
with finite population correction) and G2-FPC (G2 with fi-
nite population correction). All five methods provide similar
speed-ups for m ≥ 500, with G1-FPC and Madrid requiring
slightly fewer votes than the others. More importantly, we
see that there is a significant benefit to applying these
methods for ensembles with as few as 100 members and
that the benefit becomes greater as the ensemble size grows.

In Figures 1b and 1c, we fix the ensemble size at
m = 10000 and vary α. As one might expect, more stringent
values of α (i.e., smaller) require evaluating more of the

ensemble. Figure 1c shows that α upper bounds the relative
error for all methods. For example, with α = 0.01 the
relative error is less than 1%, and less than 3% of the
ensemble needs to be evaluated by G1-FPC and MLEE. In
the rest of the paper we use G1-FPC for lazy evaluation and
will refer to it as the GLEE rule. Section IV presents results
for GLEE on real data.

IV. EXPERIMENTS

To understand how well our COMET approach performs
we ran a set of experiments on two large real-world datasets.

A. Datasets

The data sets are described in detail below; the character-
istics are summarized in Table II.

1) ClueWeb09 Dataset: ClueWeb09 [24] is a web crawl
of over 1 billion web pages (approximately 5TB compressed,
25TB uncompressed). For this dataset we use language
categorization as the prediction task. Specifically, the task
is to predict if a given web page’s language is English or
non-English. The features are proportions of alpha-numeric
characters (0− 9, a− z, A−Z) plus one additional feature
for any other character, for a total of 63 features.

We used MapReduce to extract features for each web page
and randomly divide the data into blocks by mapping each
example to a random key. Preprocessing the full ClueWeb
dataset took approximately 2 hours on our Hadoop cluster
and created 1000 binary files totaling approximately 259 GB
and containing nearly 1B examples. From this, we randomly
extracted 200M training and 1M testing examples. The train-
ing data was divided into 200 blocks, each approximately
1/4GB in size and containing 1M examples.

2) eBird: The second dataset we use to evaluate COMET
is the US48 eBird reference dataset [25]. Each record
corresponds to a checklist collected by a bird watcher and
contains counts of how many birds, broken down by species,
were observed at a given location and time. In addition to



Table II
DATASET CHARACTERISTICS

NAME TRAIN TEST FEATURES % POSITIVE
ClueWeb 200M 1M 63 48.4%
eBird 1M 400K 1143 31.8%

the count data, each record includes attributes describing
the environment in which the checklist was collected (e.g.,
climate, land cover), the time of year, and how much effort
the observer spent. The eBird data tests how well COMET
scales for problems with data having hundreds of attributes.

The prediction task in our experiment is to predict if an
American Goldfinch (Carduelis tristis) will be observed at a
given place and time based on the environmental and data
collection attributes. We chose American Goldfinches be-
cause they are widespread throughout the United States (and
thus, frequently observed) and exhibit complex migration
patterns that vary from one region to another (making the
prediction task hard). We used the data from 1970–2008
for training and the data from 2009 for testing. All non-zero
counts were converted to 1 to create a binary prediction task.
We used all attributes except meta-data attributes intended
for data filtering (COUNTRY, STATE PROVINCE, SAM-
PLING EVENT ID, LATITUDE, LONGITUDE, OBSERVER ID,
SUBNATIONAL2 CODE).

After pre-processing, the data set contains 1.4M examples
and requires 5GB of compressed storage. We subdivided
the data into 14 training and 6 testing blocks. Each block
contains 70K examples and requires 1/4 GB of storage.

B. Implementation Details

For our experiments, we used Hadoop (version 0.21),
which includes MapReduce and the Hadoop distributed file
system (HDFS). We used the machine learning algorithm
implementations from the open-source Cognitive Foundry
[26].

All experiments were run on a cluster with 65 worker
nodes. Each worker node has one quad-core Intel i-720
(2.66 Ghz) processor, 12 GB of memory, four 2 TB disk
drives, and 1Gb Ethernet networking. Each worker node
was configured to execute up to four map or reduce tasks
concurrently. To make running times directly comparable,
we ran the serial algorithm on a worker node with a copy
of the training data sample on the local file system.

We loaded the data into HDFS with a big enough block
size to ensure each file was contained in one block (i.e.,
256MB, vs. the default 64MB block size). Large block sizes
improve accuracy by allowing IVoting to sample from more
diverse examples.

In all experiments the bite size b was set to 100K for
ClueWeb and 10K for eBird. These values were chosen
by running IVoting for 1000 iterations on one data block
with different bite sizes and measuring the accuracy on the
test data. For eBird, accuracy peaked at 10K (Table III),
possibly because larger bite sizes reduced the diversity of

Table III
ACCURACY FOR DIFFERENT BITE SIZES. WE USED THE BITE SIZE THAT
CORRESPONDED TO A LEVELING OFF OF IMPROVEMENT, I.E., 100K FOR

CLUEWEB AND 10K FOR EBIRD.

CLUEWEB EBIRD
BITE SIZE ACCURACY ACCURACY

100 n/a 0.7265
500 n/a 0.7496
1K 0.8911 0.7614
5K 0.9089 0.7753
10K 0.9163 0.7755
50K 0.9316 0.7713

100K* 0.9359 0.7699
150K 0.9370 n/a
200K 0.9377 n/a

* eBird bite size was 70K (approx. data partition size).

the base models. For ClueWeb, accuracy started to plateau
around 100K (Table III). While larger bite sizes yielded
small improvements, they also resulted in trees with big
enough memory footprints to significantly limit how many
ensemble members could be trained per core.

In GLEE, the straightforward way to sample models
(without replacement) from the ensemble is to generate a
new random number for each ensemble member that is
evaluated. If the cost of generating a random number is
relatively expensive, lazy evaluation may not provide enough
of a speed-up and may even slow down ensemble evaluation.
To avoid this, our GLEE implementation permutes the
ensemble order once at load time. Each ensemble evaluation
is started from a different random index in this order. Thus,
only a single random number is generated per ensemble
prediction.

C. Results

We first compare COMET to subsampling (i.e., IVoting
Random Forests run serially on a single block of data) to
measure the benefits of learning from all data. Accuracies
are computed using full ensemble evaluation (i.e., GLEE is
not used).

For the ClueWeb09 data (Figure 2), the serial code trains
on a single block (1M examples) using 9 different ensemble
sizes: 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
The accuracy ranges from 91.8% (100 ensemble members)
up to 93.8% (2000 members). The training time ranges
from 12min to 5hr. COMET trains on 200 blocks (200M
examples), varying across 13 different values for the local
ensemble size: 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500,
750, 1000. The total ensemble size is 200 times the local
ensemble size; thus, the largest total ensemble has 200K
members. The accuracy ranges from 89.5% (corresponding
to a local ensemble size of 1 and a total ensemble size
of 200) to 94.2% (corresponding to a local ensemble size
of 1000 and a total ensemble size of 200K) with time
varying from less than 1min to 3hr, respectively. As a point
of comparison, the distributed COMET model achieves an
accuracy of 93.8% (the same as the best serial model) in



 0.89

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 100  1000  10000  100000  1e+06

A
cc

ur
ac

y

Total Ensemble Size

Distributed and Serial Accuracy (ClueWeb)

1

5

10

25

50
75

100
200

300

1000

IVoting
COMET

COMET-B

Equivalent
Accuracy

Trees per Mapper

(a) Accuracy Comparison

 0

 50

 100

 150

 200

 250

 300

 100  1000  10000  100000  1e+06

T
ra

in
in

g 
T

im
e 

(m
in

)

Total Ensemble Size

Distributed and serial training time (ClueWeb)

IVoting
COMET

COMET-B

5X Speedup
200X Data,

(b) Training Time Comparison

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 1  10  100

A
cc

ur
ac

y

Number of Training Blocks

Training Size vs. Accuracy for Diff. Ensemble Sizes (ClueWeb)

1
5

10
50

100
500

1000

(c) Vary Training Data & Ensemble Size

Figure 2. On ClueWeb data, COMET can achieve better accuracy in less time than IVoting run serially on a subsample (IVoting line)—even though the
training data size is 200M examples for COMET (distributed in 200 blocks) vs. 1M for serial IVoting. Circles denote equal accuracy. For comparison,
Figures (a) and (b) also plot the performance of a COMET variant that uses distributed bagging instead of distributed IVoting (COMET-B line). Figure (c)
illustrates varying the number of training data blocks (1M examples per block). Different lines correspond to varying size of local ensemble. Lines for
ensemble sizes 500 and 1000 are superimposed. Accuracy plateaus at approximately 40 blocks.
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Figure 3. Using 1M eBird training examples (distributed in 14 blocks), COMET is more accurate in less time than IVoting applied serially to a 70K
subsample (IVoting line)—despite processing 14X more data. Circles denote similar accuracies. The COMET-B line in Figures (a) and (b) shows the
performance of COMET if distributed bagging is used instead of distributed IVoting. Figure (c) illustrates varying the number of training data blocks (70K
examples per block) with 200 ensemble members trained per block.

only 60min, corresponding to a total ensemble size of 60K
(300 trees per block). Thus, we achieve a 5X speed-up in
training time using 200X more data without sacrificing any
accuracy.

On the eBird data (Figure 3), serial IVoting trains from
a single block containing 70K examples and uses the same
9 ensemble sizes as for the ClueWeb09 data. The accuracy
ranges from 76.4% (for the smallest ensemble) up to 77.6%
(for the largest ensemble time), and training time ranges
from 1–20min. COMET trains on 14 blocks (1M examples),
varying across 8 different values for the local ensemble size:
25, 50, 75, 100, 150, 250, 500, 750. The total ensemble
size is 14 times the local ensemble size; thus, the largest
total ensemble has 10,500 members. The accuracy ranges
from 77.7% (better than the best serial accuracy) to 78.9%
with time ranging from 2min to 9min. The best accuracy
achieved by the serial version is 77.5% with a total ensemble
size of 2000 and a training time of 21min; the distributed
version improves on this with an accuracy of 77.8% for
a total ensemble size of only 350 (local size of 25) and
a training time of 2min. Thus, we see a 10X speed-up in
training time while using 14X more data.

Figures 2c and 3c vary the number of data blocks used
in the training. For ClueWeb, all parameters are the same

as above except for the following. The number of blocks
is varied from 1 to 200 (with 1M examples per block),
and the local ensemble size is varied from 1 to 1000. We
clearly see a flattening out as the number of blocks increases,
essentially flat-lining at 40. Likewise, the gain for increasing
the ensemble size becomes small (invisible in this graph)
for a local ensemble size of more than 250. For eBird, all
parameters are the same as above except that we fix the local
ensemble size at 200 and vary the number of blocks between
1 and 14. The accuracy increases almost monotonically with
the number of blocks used.

Figures 2 and 3 also show the performance of COMET
using bagging instead of IVoting at local nodes (COMET-B;
tree construction is still randomized). While COMET-B is
faster than COMET, it is less accurate than both serial and
distributed IVoting (i.e., standard COMET).

The second set of experiments measures the evaluation
savings and relative error incurred by using GLEE for
ensembles of different sizes on the ClueWeb and eBird data
(Figure 4).4 As expected, the results show that decreasing α
increases the average number of votes (Figures 4a, 4d) and

4To avoid confounding effects, lazy committee evaluation (section II-D)
is not used here. The 200K full-size ClueWeb trees exceeded a single node’s
memory, so an ensemble of 200K trees trained to maximum depth of 6 was
used for Figure 4 instead.
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Figure 4. For both the ClueWeb and eBird tasks, GLEE significantly reduces the average cost of ensemble evaluation while maintaining relative error
below prescribed bounds. The line graphs plot GLEE (called G1-FPC in Fig. 1) using different α values (1− confidence level). Subfigures (a) and (d)
show that the fraction of the ensemble evaluated decreases as ensemble size grows. In subfigures (b) and (e), the relative error introduced by GLEE is at
most α, the specified error rate of the approximation. The α = 10−4 line in (b) always had less than 1e-6 relative error and thus does not appear on the
graph. Subfigure (c) shows the frequency of the number of votes required. A few difficult cases require the full number of votes and are still uncertain.

decreases the relative error for any size ensemble (Figures
4b, 4e). For all ensemble sizes and α values evaluated, using
GLEE provides a significant speed-up over evaluating the
entire ensemble. This speed-up increases with ensemble size,
even for small values of α. For the ClueWeb data (top row),
relative error is less than 1% for α = 0.01. For an ensemble
of size 1K, fewer than 8% of the ensemble needs to be
evaluated, on average, and for an ensemble of size 100K,
that drops to less than 1%. Similar results hold for eBird
(bottom row). Thus, the cost of evaluating a large ensemble
can be largely mitigated via GLEE.

Finally, Figure 4c shows a histogram of the number of
evaluations needed by GLEE with α = 0.01 on a log-
log scale for ClueWeb, providing insight into why the
stopping method works — the vast majority of instances
require evaluating only a small proportion of the ensemble.
E.g., 75% of instances require 100 or fewer base model
evaluations.

V. RELATED WORK

A. Distributed Ensembles

Ensemble learning has long been used for large-scale
distributed machine learning. Instead of converting a learn-
ing algorithm to be natively parallel, run the (unchanged)
algorithm multiple times, in parallel, on each data partition
[13], [27]–[29]. An aggregation strategy combines the set of
learned models into an ensemble that is usually as accurate,

if not more accurate, than a single model trained from all
data would have been. For example, Chan and Stolfo [27]
study different ways to aggregate decision tree classifiers
trained from disjoint partitions. They find that voting the
trees in an ensemble is sufficient if the partition size is big
enough to produce accurate trees. They propose arbiter trees
to intelligently combine and boost weaker trees to form
accurate ensembles in spite of small partitions. Domingos
[28] similarly learns sets of decision rules from partitioned
data, but combines them using a simpler weighted vote. Yan
et al. [30] train many randomized support vector machines
with a MapReduce job; a second job runs forward stepwise
selection to choose a subset with good performance. The
final ensemble aggregates predictions through a simple vote.
In this work we use simple voting as our aggregation strategy
because our data partitions are relatively large.

Our distributed learning strategy is inspired by Chawla
et al.’s work on distributed IVoting [13]. They empirically
compare IVoting applied to all training data to distributed
IVoting (DIVoting) in which IVoting is run independently
on disjoint data partitions to create sub-ensembles that are
merged to make the final ensemble. Their results show
that DIVoting achieves comparable classification accuracy
to (serial) IVoting with a faster running time, and better
accuracy than distributed bagging that used the same sample
sizes. Compared to DIVoting, COMET benefits from using
MapReduce instead of MPI (for an easier implementation,



scaling to data larger than the memory of all nodes, and
ability to handle node failures) and incorporates lazy ensem-
ble evaluation for efficient predictions from large ensembles.
Lazy evaluation is particularly important when learning from
large data sets with many data partitions. The work of Wu
et al. [31] is also closely related to ours. They also train a
decision tree ensemble using MapReduce in a single pass,
but only train one decision tree per partition, do not use lazy
ensemble evaluation, and evaluate the ensemble on a single
small data set with only 699 records.

Like COMET and DIVoting, distributed boosting [32],
[33] trains local ensembles from disjoint data partitions and
combines them in a global ensemble. Worker nodes train
boosted trees from local data but need to share learned mod-
els with each other every iteration to update the sampling
weights. The resulting ensembles are at least as accurate
as boosted ensembles trained serially and can be trained
much faster [33]. Svore and Burges [34] experiment with
a variant of distributed boosting in which only one tree is
selected to add to the ensemble at each iteration. As a result
the boosted ensemble grows slowly but is not as accurate
as serial boosting. Chawla et al. [13] showed that DIVoting
gives similar accuracy as distributed boosting without the
communication overhead of sharing models.

The BagBoo algorithm [35] creates a bagged ensemble
of boosted trees with each boosted sub-ensemble trained
independently from data subsamples. Like COMET, BagBoo
is implemented on MapReduce and creates mega-ensembles
when applied to massive datasets (e.g., 1.125 million trees).
The ensembles are at least as accurate as boosted ensembles.
Unlike COMET, sub-ensembles are small (10–20 models)
to mitigate the risk of boosting overfitting, and the non-
uniform weights of trees in the ensemble precludes lazy
ensemble evaluation. Because each sub-ensemble is trained
from a sub-sample, a data point can appear in multiple
bags (unlike COMET’s partitions); it is unclear from the
algorithm description what communication cost this incurs.
Since IVoting and AdaBoost yield similar accuracies [11],
we expect that COMET and BagBoo would as well.

A different strategy is to distribute the computation for
building a single tree; this subroutine is used to build an
ensemble in which every model benefits from all training
data. This approach involves multiple iterations of compute
nodes calculating and sending split statistics for their lo-
cal data to a controller node that chooses the best split.
Most such algorithms use MPI because of the frequent
communications [36], [37]. One exception is PLANET [7]
which constructs decision trees from all data via multiple
MapReduce passes. PLANET constructs individual trees by
treating the construction of each node in the tree as a task
involving the partially constructed tree. The mappers look at
the examples that fall into the unexpanded tree node, collect
sufficient statistics about each feature and potential split for
the node, and send this information to the reducers. The

reducers evaluate the best split point for each feature on a
node. The controller chooses the final split point for the node
based on the reducer output. Because many MapReduce
jobs will be involved in building a single tree, PLANET
includes many optimizations to reduce overhead, including
1) batching together node construction tasks so that each
level in the tree is a single job; 2) finishing subtrees with
a small number of items in-memory in the reducer; and 3)
using a custom job control system to reduce job setup and
teardown costs.

B. Lazy Ensemble Evaluation

Whereas much research has studied removing unnecessary
models from an ensemble (called ensemble pruning) [38],
only a few studies have used lazy ensemble evaluation
to dynamically speed up prediction time in proportion to
the ease or difficulty of each data point. Fan et al. [29]
use a Gaussian confidence interval to decide if ensemble
evaluation can stop early for a test point. Their method
differs from the one described in Section II-C in that a)
ensemble members are always evaluated from most to least
accurate, and b) confidence intervals are based on where
evaluation could have reliably stopped on validation data. A
fixed ordering is not necessary in our work because the base
models have equal voting weight and similar accuracy; this
leads to a simpler Gaussian lazy ensemble evaluation rule.

Markatopoulou et al. [39] propose a more complicated
runtime ensemble pruning, where the choice of which base
models to evaluate is decided by a meta-model trained to
choose the most reliable models for different regions of the
input data space. Their method can achieve better accuracy
than using the entire ensemble, but generally will not lead
to faster ensemble predictions.

VI. CONCLUSION

COMET is a single-pass MapReduce algorithm for learn-
ing on large-scale data. It builds multiple ensembles on
distributed blocks of data and merges them into a mega-
ensemble. This approach is appropriate when learning from
massive-scale data that is too large to fit on a single machine.
It compares favorably (in both accuracy and training time) to
learning on a subsample of data using a serial algorithm. Our
experiments showed that it is important to use a sequential
ensemble method (IVoting in our case) when building the
local ensembles to get the best accuracy.

The combined mega-ensemble can be efficiently evaluated
using lazy ensemble evaluation; depending on the ensemble
size, the savings in evaluation cost can be 100X or better.
Two options are available for lazy evaluation: our GLEE
rule and the Bayesian MLEE rule [16]. GLEE is easy to
implement, is asymptotically faster to compute than MLEE,
and provides the same evaluation savings and approximation
quality as MLEE. If one desires to further speed up evalu-
ation or reduce the model’s storage requirements, ensemble



pruning [38] could be applied to remove extraneous base
models, or model compression [40] could be used to compile
the ensemble into an easily deployable neural network.
Ultimately the appropriateness of sacrificing some small
accuracy (and how much accuracy) for faster evaluations
will depend on the application domain.

In future work, it will be interesting to contrast COMET
to PLANET [7], which builds trees using all available data
via multiple MapReduce passes. As there is no open-source
version of PLANET currently available and this procedure
is highly time-consuming without special modifications to
MapReduce [7], we are unable to provide direct comparisons
at this time. However, we imagine that there will be some
trade-off between accuracy (using all data for every tree) and
time (since COMET uses only a single MapReduce pass).
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