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ABSTRACT
Triangles are an important building block and distinguish-
ing feature of real-world networks, but their structure is still
poorly understood. Despite numerous reports on the abun-
dance of triangles, there is very little information on what
these triangles look like. We initiate the study of degree-
labeled triangles — specifically, degree homogeneity versus
heterogeneity in triangles. This yields new insight into the
structure of real-world graphs. We observe that networks
coming from social and collaborative situations are domi-
nated by homogeneous triangles, i.e., degrees of vertices in a
triangle are quite similar to each other. On the other hand,
information networks (e.g., web graphs) are dominated by
heterogeneous triangles, i.e., the degrees in triangles are
quite disparate. Surprisingly, nodes within the top 1% of
degrees participate in the vast majority of triangles in het-
erogeneous graphs. We investigate whether current graph
models reproduce the types of triangles that are observed
in real data and observe that most models fail to accurately
capture these salient features.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and Networks; H.2.8
[Information Systems]: Database Applications—Data Min-
ing

Keywords
Social networks, graph models, triangles in graphs

1. INTRODUCTION
There is a growing interest in understanding the struc-

ture, dynamics, and evolution of large scale networks. Ob-
serving the similarities and differences among real-world net-
works improves graph mining in many aspects ranging from
community detection to generation of more realistic random
graphs.

A triangle is a set of three vertices that are pairwise con-
nected and is arguably one of the most important patterns
in terms of understanding the inter-connectivity of nodes
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in real graphs [18]. Note that the community structure is
closely tied to triangles, and the degree behavior of trian-
gles is an integral part of this structure [16]. Whether these
graphs come from communication networks, social interac-
tion, or the Internet, the presence of triangles is an indica-
tion of community behavior. In social networks, it is highly
probable that friends of friends will themselves be friends,
thus forming many triangles.

In this paper, we take a closer look at the structure of
triangles, specifically, the degrees of the triangle vertices.
How are the degrees of the vertices related? Do different
degrees represent fundamentally different types of relation-
ships and so appear in different sorts of networks? When we
look at real-world networks, we may ask if there is a high
incidence of degree homogeneity, wherein vertices of simi-
lar degree come together to form triangles? Or do triangles
tend to show degree heterogeneity, i.e., connecting vertices
of disparate degree?

1.1 Background and Previous Work
The notion of describing graph structure based on the fre-

quency of small patterns such as triangles has been proposed
under different names such as motifs [12], graphlets [14], and
structural signatures [6]. Triangle counts form the basis for
community detection algorithms in [2]. Triangles have also
served as the driving force for generative models [16, 18].

The frequency of triangles is often measured using the
clustering coefficient, as defined by Watts and Strogatz [18].
We first establish some notation. Consider an undirected
graph G with n vertices. Let dj denote the degree of node j
and tj denote the number of triangles incident to node j. If
we define a wedge to be a path of length 2, then the number
of wedges centered at node j is

(
dj
2

)
. Now we can define

various clustering coefficients. The clustering coefficient of
vertex j, Cj , is defined as the number of triangles incident
to j divided by the number of wedges centered at j, i.e.,
Cj = tj/

(
dj
2

)
. The average of clustering coefficients across

all vertices (called the local clustering coefficient) is defined
as C = 1

n

∑
j Cj . The (global) clustering coefficient, also

known as the transitivity, is

C =
3× total number of triangles

total number of wedges
=

∑
j tj∑

j

(
dj
2

) .
Most of the studies on degree-based similarity are based on

assortativity, which was introduced by Newman [13]. Var-
ious studies have been conducted on the assortativity (or
lack thereof) of real graphs [8, 19]. However, Newman’s as-
sortativity measure is misleading to classify networks with
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heavy-tailed degree distributions because it produces either
neutral or negative assortativity (disassortativity) values for
most of the large scale networks as shown in Table 1 (see r
values).

Most relevant to our work is that of Tsourakakis [17],
which observes that the average number of triangles per de-
gree follows a power-law distribution and the slope of the
degree-triangle plot has the negative slope of the degree dis-
tribution plot of the corresponding graph. It is argued that
low degree nodes form fewer triangles than higher degree
nodes. Our analysis shows that while this is certainly true
for social networks, it does not hold for information net-
works, such as the autonomous systems networks.

1.2 Contributions
Our contributions fall into two categories. Our first set

of results comes from empirical studies of degree relations
in triangles of real graphs. Then, we perform experiments
on a variety of graph models to show their (in)ability to
reproduce the behavior of real graphs.

Triangle homogeneity vs heterogeneity: We take a
collection of graphs from diverse scenarios (collaboration,
social networking, web, infrastructure) and measure trian-
gle degree relationships. We compute various correlations
between degrees of vertices in triangles to understand the
homogeneity of these triangles.

Our experiments show that graphs coming from social or
collaborative scenarios are completely dominated by homo-
geneous triangles. There are a few heterogeneous triangles.
This may not be surprising from a sociological viewpoint,
since like should attract like. But graphs coming from web,
routing, or communication are dominated by heterogeneous
triangles. It is interesting that in communication or rout-
ing networks, the majority of triangles are formed by the
vertices within the top 1% of degrees.

We observed that there is a high correlation between the
global clustering coefficient, C, and the homogeneity ten-
dency of triangles. Higher C values imply stronger homo-
geneity of triangles.

The triangle behavior of graph models: Our result
can be stated quite succinctly. No existing graph model re-
flects the homogeneous and heterogeneous triangle behavior
together. Many standard graph models like Preferential At-
tachment [1], Edge Copying [9], Stochastic Kronecker [10],
etc. do not generate enough triangles and they cannot ap-
proximate the clustering coefficients of the real graphs [15].
The Chung-Lu [3] model cannot generate homogeneous graphs
and cannot approximate the clustering coefficient of the high
clustering coefficient networks. However, Chung-Lu is the
only model that imitates the networks with low clustering
coefficients and heterogeneous triangles.

The Forest Fire [11] and BTER [16] models generate a
reasonable number of triangles (especially incident to low
degree vertices) but these triangles are extremely homoge-
neous. Low degree vertices, when they participate in trian-
gles, exclusively form triangles with other low degree ver-
tices. This happens regardless of parameter choices, and is
a fundamental property of these models. This shows that
while they can qualitatively look like social and interaction
networks, the behavior of heterogeneous networks cannot be
reproduced by these models.

2. REAL-WORLD TRIANGLE BEHAVIOR

2.1 Data
We analyze the degree relations among vertices of trian-

gles on a diverse set of graphs obtained from the SNAP
database [20] and listed in Table 1. We have symmetrized
the graphs by treating all edges as undirected, made each
graph simple by removing self loops and parallel edges, and
did not use edge weights. Cohen’s algorithm [5] was used to
enumerate all triangles.

In Table 1, we provide the following properties of the graphs
we analyzed: N = number of nodes; E = number of edges;
ρ = E/N (density); C = global clustering coefficient; C =
local clustering coefficient; T = number of triangles; α =
power-law exponent, which is computed by fitting power-
law distribution to degree distribution plots of the graphs
[4]; κ90 and κ99, respectively, are the 90th and 99th per-
centiles of degree of all nodes participating in triangles (i.e.,
we obtain all nodes participating in any triangle (each node
is only counted once), put their degrees in a list, and then
pick the 99th percentile of the degree list); dmax = maximum
degree; and r = assortativity value.

In this paper, a network whose global clustering coeffi-
cient, C is greater than 0.01, is referred to as a high-C net-
work; otherwise, it is a low-C network.

2.2 Analysis
We analyze the degree similarity of triangle vertices by

grouping the triangles according to their minimum degree.
We first present the notation. For t = 1, . . . , T , let dmin(t),
dmid(t), and dmax(t) denote the minimum, middle, and max-
imum degree of the t-th triangle. For instance, if the t-th
triangle has vertices of degrees 5, 10, and 4, then dmin(t) = 4,
dmid(t) = 5, and dmax(t) = 10. Define B(i) to be the set of
all triangles whose minimum degree is i, i.e.,

B(i) = { t ∈ T | dmin(t) = i } .

We then define some average statistics for each set B(i).
Define d1(i), d2(i), and d3(i) to be the median of minimum,
middle, and maximum degree, respectively, of triangles in
B(i). In other words,

d1(i) = median { dmin(t) | t ∈ B(i) } = i,

d2(i) = median { dmid(t) | t ∈ B(i) } ,
d3(i) = median { dmax(t) | t ∈ B(i) } .

For instance, for B(2) = {[2 2 3], [2 4 5], [2 3 3]}, d1(2) = 2,
d2(2) = 3 and d3(2) = 3.

To compare the relations among triangle degrees, we plot
d2(i) and d3(i) versus d1(i) in Figure 1 and call them degree-
comparison plots. Note that in these and all other log-log
and semi-log plots, we use the exponential binning which is
a standard procedure to de-noise the data when plotting on
logarithmic scale. The degree-comparison plots of the rest
of the graphs can be found in our extended paper [7].

2.3 Observations
By considering the degree relations of the triangle vertices,

we make the following observations.

Observation 1: The global clustering coefficient is an
indicator for the triangle degree relations.

In Figure 1, we can see a clear relation between global
clustering coefficient C and the type of triangles. In high-C

1713



Table 1: Properties of networks we analyzed.

Graph Name N E ρ C C T α κ90 κ99 dmax r

high-C
amazon0312 400K 2,349K 5.9 0.260 0.41 3,686K 3.1 19 55 2747 -0.02
ca-AstroPh 18K 198K 11 0.318 0.63 1,351K 1.52 56 145 504 0.2
cit-HepPh 34K 420K 12 0.146 0.30 1,276K 1.53 56 147 846 0

low-C
as-caida20071105 26K 53K 2 0.007 0.21 36K 1.52 12 99 2628 -0.19
oregon1 010331 10K 22K 2.1 0.009 0.45 17K 1.5 10 839 2312 -0.18

wiki-Talk 2,394K 4,659K 1.9 0.002 0.20 9,203K 1.67 21 401 100029 -0.06

(a) ca-AstroPh (b) cit-HepPh (c) as-caida20071105 (d) wiki-Talk

Figure 1: Triangle degree-comparison plots which compare the minimum degree, d1(i), and the medians of the middle degree,
d2(i), and the maximum degree, d3(i)

networks, minimum, middle, and maximum degrees of tri-
angle vertices are close in value. While, in low-C networks,
triangles are highly heterogeneous. Observe how very small
values of d1(i) connect to quite large d2(i) or d3(i) in Fig-
ure 1c and Figure 1d.

The average clustering coefficient C is not a very distin-
guishing metric for our study. The global clustering coeffi-
cient C shows wide variance and is a better indicative of the
triangle behavior.

Observation 2: The ratios among degrees of triangle ver-
tices are small in high-C networks and large in low-C net-
works.

The ratios of triangle degrees provide valuable informa-
tion to see the distinction between networks. For the t-th
triangle, three degree ratios are defined as follows.

r21(t) =
dmid(t)

dmin(t)
, r31(t) =

dmax(t)

dmin(t)
, and r32(t) =

dmax(t)

dmid(t)

These ratios are computed for all the triangles separately
and their averages are taken as r̄21, r̄31, and r̄32, respectively.

Based on the ratios among degrees, we define homogeneity
measure h = r̄32

r̄31
to discriminate networks with homogenous

triangles from the networks with heterogenous triangles. Ta-
ble 2 lists the average ratios for all the networks. There
is a clear distinction between high-C and low-C networks.
The average ratios are very small in high-C networks, which
also supports the triangle homogeneity in high-C networks.
Whereas, the average degree ratios (r̄21 and r̄31) are signif-
icantly large in low-C networks. Homogeneity measures h
are very small for low-C, whereas h values are around 0.5
for high-C networks.

Observation 3: In low-C networks, high degree vertices
within the top 1% participate in the vast majority of the
triangles.

Table 2: The average of triangle degree ratios

Graph Name r̄21 r̄31 r̄32 h

high-C
amazon0312 1.98 4.95 2.53 0.51
ca-AstroPh 1.88 3.46 1.89 0.54
cit-HepPh 2.20 4.96 2.38 0.48

low-C
as-caida20071105 70.99 164.35 8.14 0.05
oregon1 010331 54.80 175.69 9.09 0.05

wiki-Talk 42.64 138.01 4.75 0.03

In high-C networks, the triangles incident to low degree
vertices are mostly connecting to two low degree vertices.
On the other hand, in low-C networks (particularly when ρ
is low), a significant portion of the triangles contain at least
one high degree vertex.

To set a threshold between low degrees and high degrees,
we have experimented different percentiles of vertices that
participate in at least one triangle. We pick κ99 (see Table 1)
as a threshold, since κ90 is still relatively low compared to
the maximum degree in most networks. A degree of a tri-
angle vertex is considered high, if the degree is greater than
κ99, otherwise it is considered low.

We look at the percentages of the triangles having at least
one high degree node in Figure 2. In low-C networks, we can
see that high degree vertices within the top 1% participate
in most of the triangles. In high-C, high degree nodes are
participating in fewer triangles.
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Figure 2: The percentage of triangles produced by vertices
in the top 1% degrees

3. GRAPH-MODEL TRIANGLE BEHAVIOR
In this section, we investigate how well random graph gen-

erators match the real graphs in terms of triangle degree
similarity. We concentrate on the graph models generating
heavy-tailed degree distributions.

3.1 Graph Models
The Chung-Lu (CL) model [3] is a variant of the clas-

sic Erdős-Rényi model for any degree distribution. In this
model, the probability of inserting an edge is proportional to
the product of the degrees of its endpoints, (i.e., Pr (eij) =
didj
(2E)

).

The Block Two-Level Erdős-Rényi (BTER) model [16] is
built on the observation of high-clustering coefficients and
skewed degree distributions. This model achieves high clus-
tering coefficients by embedding communities with an Erdős-
Rényi structure, which is typically much denser compared
to the rest of the graph. Additional edges are added in a
subsequent phase using the CL model, to satisfy the degree
distribution requirements. It has been shown that BTER
graphs can match many properties of real world graphs [16].

The Forest Fire (FF) model [11] combines the Preferential
Attachment model [1] to obtain a heavy-tailed degree distri-
bution, the Edge Copying model [9] to obtain communities,
and community guided attachment for densification.

3.2 Triangle Analysis in Graph Models
To check whether graph models can reproduce the triangle

degree behavior of the real networks, we fit FF, BTER, CL,
the Edge Copying (EC) [9], the Preferential Attachment
(PA) [1], and the Stochastic Kronecker Graph (SKG) [10]
models to the real networks listed in Table 1. The details of
fitting graph models to the real networks can be found in [7].
We enumerate triangles in each randomly generated network
using Cohen’s algorithm [5], and we analyze the triangle
behaviors in these random graphs from different aspects.

The numbers of triangles: None of the graph models
capture the triangle numbers for both high-C and low-C
networks.

Graph models behave differently in high-C and low-C net-
works in terms of generating triangles. The BTER is good at
generating similar number of triangles for high-C networks,
the FF and CL are good at for low-C networks, but none of
the graph models is good at both. The number of triangles

generated by different graph models for each target graph is
listed in Table 3.

EC, PA, and SKG generate significantly less triangles than
the original triangle numbers. These models also cannot
reach the average clustering coefficient per degree for any of
the networks. Therefore, we will not include them for the
rest of the plots.

Degree Relations: Models generate only one type of tri-
angles without distinguishing low-C or high-C networks.

In Figure 3, we show the relation between d1(i) and d2(i)
for the real graphs as well as their modeled counterparts.
The relation between d1(i) vs d3(i) acts similarly as shown
in the long version of this paper [7].

CL produces heterogeneous triangles for both high-C and
low-C networks in both Figure 3. For low-C networks, it
is very intriguing that CL graphs are generating the right
type of triangles. But we feel that this indicates that low-
C networks have a CL flavor to them (i.e., triangles are
random). BTER generates homogeneous triangles for both
high-C and low-C networks. For high-C networks, BTER
generates lower d2(i) and d3(i) values than original d3(i)
values. FF behaves like BTER for low-C networks. Low
degree d1(i) values cannot connect to high degree vertices.
Distance between FF’s d2(i) and original d2(i) is consid-
erable large. FF also reaches higher d1(i) values than the
original d1(i) values.

4. CONCLUSIONS
The abundance of triangles in real-word networks have

been the subject of many studies, and is recognized as an
important feature of real networks. In this work, we went
one step further than looking at merely the number of trian-
gles and analyzed the degree relations between the vertices
of triangles in real-world networks. Our experiments showed
that degrees of triangle vertices are either homogenous or
heterogeneous in different networks, and the global cluster-
ing coefficient is a good indicator of the type of triangles in
a network.

We have also investigated whether the current graph mod-
els can regenerate the types of triangles in the real data and
showed that none of the graph models are able to capture
both homogenous or heterogeneous triangles together. Our
results clearly point to a deficiency in current models to
create both social and communication networks. Our obser-
vations will be helpful for designing realistic graph models
supporting the triangle degree behavior in community struc-
tures.
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