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Community structure and scale-free collections of Erdős-Rényi graphs
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Community structure plays a significant role in the analysis of social networks and similar graphs, yet this
structure is little understood and not well captured by most models. We formally define a community to be
a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics
to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical
arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must
contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with
empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate
that it accurately captures the observable properties of many real-world social networks.
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I. INTRODUCTION

Graph analysis is becoming increasingly prevalent in the
quest to understand diverse phenomena like social relation-
ships, scientific collaboration, purchasing behavior, computer
network traffic, and more. We refer to graphs coming from such
scenarios collectively as interaction networks. A significant
amount of investigation has been done to understand the
graph-theoretic properties common to interaction networks.
Of particular importance is the notion of community structure.
Interaction networks typically decompose into internally
well-connected sets referred to as low conductance or high
modularity cuts [1,2]. Moreover, many graphs have high
clustering coefficients [3], which is indicative of underlying
community structure. Communities occur in a variety of sizes,
though the largest community is often much smaller than the
graph itself [4,5]. Community analysis can reveal important
patterns, decomposing large collections of interactions into
more meaningful components.

A. A theory of communities

One metric of the quality of a community is the modularity
metric [2]. There are other measures such as conductance [6],
but they are equivalent to modularity in terms of our intentions.
Consider a graph G (undirected) with n vertices and degrees
d1,d2, . . . ,dn. Let m = 1

2

∑n
i=1 di denote the number of edges.

We say a subgraph S has high modularity if S contains many
more internal edges than predicted by a null model, which
says vertices i and j are connected with probability didj /2m.
(Technically, this is only true if we assume d2

i � 2m for all i.
We keep the notation simple for now and handle the case of
d2

i > 2m explicitly in our discussion of the theoretical details.)
We refer to the null model as the CL model, based on its
formalization by Chung and Lu [7,8]; see also Aiello et al. [9].
It is very similar to the edge-configuration model of Newman
et al. [10].

Given a high modularity subgraph S, we say it is a module if
it does not contain any further substructures of interest; in other
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words, it is internally well modeled by CL. Formally, assume
S has r nodes with internal degrees d̂1,d̂2, . . . ,d̂r and let the
number of edges in S be denoted by s = 1

2

∑r
i=1 d̂i . Consider

the CL model on S, where edge (i,j ) occurs with probability
d̂i d̂j /2s. We call S a module if the induced subgraph on S

(the subgraph internal to S) is modeled well by this CL model.
Looking at the contrapositive, if S is not a module, then S

itself contains a subset of vertices that should be separated
out. A module can be thought of as an “atomic” substructure
within a graph. In this language, we can think of community
detection algorithms as breaking a graph into modules. This
discussion is not complete, however, since communities are
not just modules, but also internally well connected.

Interaction networks have an abundance of triangles, a
fact that Watts and Strogatz [3] succinctly express through
clustering coefficients. Barrat and Weigt [11] defined this as

C = 3 × total number of triangles

total number of wedges
, (1)

where a wedge is a path of length 2 [1,3]. It has been observed
that C “has typical values in the range of 0.1 to 0.5 in many
real-world networks” [1]. Moreover, our own studies have
revealed that the node-level clustering coefficient (first used in
Ref. [3]), Ci , defined by

Ci = number of triangles incident to node i

number of wedges centered at node i
, (2)

is typically highest for small degree nodes. Large clustering
coefficients are considered a manifestation of the community
structures. Naturally, we expect the triangles to be largely
contained within the communities due to their high internal
connectivity.

We now formally define a community to be a module with a
large internal clustering coefficient. Note that this is different
from many other definitions of community which generally
define a community as being more internally than externally
connected. More formally, we say a module is a community if
the expected number of triangles is more than (κ/3) times the
total number of wedges, for some constant κ . This is consistent
with the notion of triangle modularity introduced by Arenas
et al. [12]. By our definition, a community is tightly connected
internally and therefore contains many triangles. A graph has
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community structure if it (or at least a constant fraction of
it) can be broken up into communities. The benefit of this
formalism is that we can now try to understand what graphs
with community structure look like.

Let us first begin by just focusing on a single community.
It seems fairly intuitive that a community in a social network
cannot be large while comprising only low-degree vertices
nor that it consists of a single high-degree node connected to
degree-one vertices (a star). We can actually prove a structural
theorem about a community, given our formalization. Recall
that an Erdős-Rényi (ER) graph [13,14] on n vertices with
connection probability p is a graph such that each pair of
vertices is independently connected with probability p. If p is
a constant, we call this a dense ER graph; if p = O(1/n), then
we call this a sparse ER graph. Using triangle bounds from
extremal combinatorics and some probabilistic arguments, we
can prove the following theorem.

Theorem 1. A constant fraction of the edges in a community
are contained in a dense Erdős-Rényi graph. More formally, if
the community has s edges, then there must be �(

√
s) vertices

with degree �(
√

s).
This theorem is interesting because even though it is well

known that ER graphs are not good models for interaction
networks, they nonetheless form an important building block
for the communities. We interpret this theorem as saying that
the simplest possible community is just a dense ER graph.
Building on this simple intuition, we think of an interaction
network as consisting of a large collection of dense ER graphs.

This leads naturally to a question about the distribution of
sizes of these ER components. A consequence of our theory
is that an ER community with d + 1 vertices would have ρd2

edges for some constant ρ � 1. For the hypothesis on the
expected number of triangles to hold, ρ is assumed to be
close to one. For simplicity, we assume that the communities
are homogeneous in degree. Now, consider the power-law
degree distribution observed by Barabási and Albert [15] and
others. They show that interaction graphs exhibit heavy-tailed
degree distributions such as

Xd ∝ d−γ , (3)

where Xd is the number of nodes of degree d and γ is
the power-law exponent. If we assume that all nodes in a
community have the same degree, then nodes of degree d yield
Xd/(d + 1) communities. Thus, if we let Yd be the number of
communities of size (d + 1) (with vertices of degree d), then

Yd ∝ Xd/(d + 1) ∝ d−(γ+1).

This forms a scale-free distribution of communities, exactly
as observed by many studies on community structure [4,5].
Hence, we hypothesize that real-world interaction networks
consist of a scale-free collection of dense Erdős-Rényi graphs.
This is consistent with most of the important observed
properties of these networks.

Empirically, a variety of studies [4,5,16,17] show the
existence of a few “reasonably large” communities, a large
number of small communities, and all scales in between. It has
been observed for a large number of diverse graphs that the
largest community seen is of the order of 100 vertices [4]. This
is quite consistent with a calculation based on our hypothesis.
If we assume Xd = n/dγ and that there exists a community

of size d, then we require n/dγ+1 � 1. Hence, the maximum
community size, d̄, is d̄ ≈ n1/(γ+1). For n being a million and
γ = 2, we get an estimate at the order of 100 nodes.

As an aside, Theorem 1 also proves that CL by itself is
not a good model for interaction networks. Suppose the entire
graph G (with m edges) can be modeled as a CL graph. Since
G has a high clustering coefficient, then G itself is a module.
Hence, G must have �(

√
m) vertices with degree �(

√
m), but

this violates the tail behavior of the degree distribution.

B. The BTER model

Based on the idea of a graph comprising ER communities,
we propose the Block Two-Level Erdős-Rényi model (BTER).
The advantages of the BTER model are that it has community
structure in the form of dense ER subgraphs and that it matches
well with real-world graphs. We briefly describe the model
here and provide a more detailed explanation and comparisons
to real-world graphs in subsequent sections.

The first phase (or level) of BTER builds a collection of ER
blocks in such a way that the specified degree distribution is
respected. The BTER model allows one to construct a graph
with any degree distribution. Real-world degree distributions
might be idealized as power laws, but it is by no means
a completely accurate description [18,19]. When the degree
distribution is heavy tailed, then the BTER graph naturally
has scale-free ER subgraphs. The internal connectivity of the
ER graphs is specified by the user and can be tuned to match
observed data.

The second phase of BTER interconnects the blocks. We
assume that each node has some excess degree after the first
phase. For example, if vertex i should have di incident edges
(according to the input degree distribution), and it has d ′

i edges
from its ER block, then the excess degree is di − d ′

i . We use
a CL model (which can be considered as a weighted form of
ER) over the excess degrees to form the edges that connect
communities.

C. Previous models

There are many existing models for social networks and
other real-world graphs. We give a short description of some
important models; for more details, we recommend the survey
of Chakrabarti and Faloutsos [20]. Classic examples include
preferential attachment [15], small-world models [3], copying
models [21], and forest fire [22]. Although these models
may produce heavy-tailed degree distributions, their clustering
coefficients of the former three models are often low [23]. Even
for models that give high clustering coefficients, it is difficult
to predict their community structure in advance. Because of
their unpredictable behavior, it is not possible to match real
data with these graphs. This makes it difficult to validate
against real-world interaction networks. Moreover, none of
these models explain community structure, one of the most
striking features of interaction graphs.

A widely used model for generating large graphs is the
Stochastic Kronecker Graph model (known as R-MAT in an
early incarnation) [24,25]. Notably, it has been selected as
the generator for the Graph 500 Supercomputer Benchmark
[26]. Though it has some desirable properties [25], it can
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only generate log-normal tails (after suitable addition of
random noise [27]) and does not produce high clustering
coefficients [23,28]. Multifractal networks are closely related
to the SKG model [29]. The random dot product model [30,31]
can be made scalable but has never been compared to real
social networks. There have been successful dendogram-
based structures that perform community detection and link
prediction in real graphs [32,33]. The recent hyperbolic graph
model [34,35] is based on hyperbolic geometry and has been
used to perform Internet routing.

The stochastic block model [36] has been used to generate
better algorithms for community detection. A degree-corrected
version [37] has been defined to deal with imprecisions in this
model. A key feature of these models is that they break the
graph into a constant number of relatively large blocks, and
our theory shows that this model does not give a satisfactory
explanation of the clustering coefficients of low degrees (which
constitute a majority of the graph). The LFR community
detection benchmark [38] is also somewhat connected to
this model, since it defines a set of communities and has
probabilities of edges within and between these communities.
We stress that these models do not attempt to match real graphs,
nor do they explain the scale-free nature of communities [4,5].
Our hypothesis and model are very different from these results,
because we use a mathematical formalization to prove the
existence of a scale-free dense ER collection, and the BTER
model follows this theory. Nonetheless, our model can be seen
as an extension of these block models, where the number
and sizes of blocks form a scale-free behavior. Implicitly,
our model can be seen to use a labeling scheme for vertices
that depends on the degrees, and connecting vertices with
probabilities depending on the labels (thereby related to the
degree-corrected framework of [37]).

II. MATHEMATICAL OVERVIEW

We provide a sketch of the proof for Theorem 1 to give an
intuitive explanation; a complete proof is provided in the next
section. Our analysis is fundamentally asymptotic, so for ease
of notation we use the O(·), �(·), and �(·) to suppress constant
factors. The notation A � B indicates that there exists some
absolute constant c such that A � cB. We let S denote the
community of interest and assume that the internal degree
distribution of the community S is d̂1,d̂2, . . . ,d̂r and ordered
so that d̂i � d̂j for all i < j . We denote the number of edges
in S by s = 1

2

∑r
i=1 d̂i .

Based on the given distribution, let T denote the expected
number of triangles in S. Since this is a community, we demand
that T be at least κ/3 times the expected number of wedges,
for some constant κ . This means that

T � (κ/3)
∑

i

(
d̂i

2

)
. (4)

(For convenience, we will assume that ∀i,d̂i > 1, since degree-
1 vertices do not participate in triangles.) A key fact we use
is the Kruskal-Katona theorem [39–41] which states that if a
graph has T triangles and s edges, then T � s3/2. Combining,

we have ∑
i

d̂2
i � s3/2. (5)

Now, let us count the expected number of triangles based
on the CL distribution. For any triple (i,j,k), let Xijk be
the indicator random variable for (i,j,k) being a triangle.
This occurs when all the edges (i,j ), (j,k), and (k,i) are
present, and by independence, this probability is pijpjkpki ,
where pij = d̂i d̂j /2m. The expected number of triangles T

can be expressed as E[
∑

i<j<k Xijk], which (by linearity of
expectation) is

∑
i<j<k E[Xijk]. Therefore,

T =
∑

i<j<k

d̂i d̂j

2s

d̂j d̂k

2s

d̂i d̂k

2s
�

(∑
i d̂

2
i

)3

8s3
. (6)

We argued earlier that T = �(
∑

i d̂
2
i ). We can put this bound

in Eq. (6) and rearrange to get

s3/2 �
∑

i

d̂2
i . (7)

This is the exact reverse of (5)! This means that these quantities
are the same up to constant factors. When can this be satisfied?
If the community consists of

√
s vertices all with degree√

s, then
∑

i d̂
2
i = ∑

i s = s3/2, and the conditions are exactly
satisfied. Intuitively, to satisfy both (5) and (7), there have to be
�(

√
s) vertices of degree �(

√
s). These vertices form a dense

ER graph within the community proving that each community
involves a constant fraction of the edges in an ER graph.

III. THEORETICAL DETAILS

A reader interested in only a general overview of the results
can skip this section. The aim of this section is to prove
Theorem 1, which we restate in slightly different wording
for convenience. The proof is fairly involved mathematically,
and formalizes the argument discussed in the previous section.

We use small Greek letters for constants less than 1, and
small Roman letters for constants whose values may exceed
1. All constants are positive. We make no attempt to optimize
various constant factors in the proof. The proof is asymptotic
in s, the number of edges of our community. That means that
the proof holds for any sufficiently large s.

We describe the specifics of the CL graph that is generated.
For every ordered pair (i,j ), let pij = d̂i d̂j /(2s)2. Note that this
creates a distribution over all pairs, since

∑
i,j d̂i d̂j /(2s)2 =

(
∑

i d̂i)2/(2s)2 = 1. We generate s independent samples from
this distribution to get our graph. The final graph is made
undirected and simple (so parallel edges are removed). This is
one of the standard methods for the edge-configuration model.

Theorem 2 (Restatement of Theorem 1). Consider a CL
graph with degree sequence 1 < d̂1 � d̂2 � · · · � d̂r and set
s = ∑

i d̂i/2. The quantities c > 0 and κ ∈ (0,1) are constants
(independent of s).

Assume the expected number of triangles in a CL graph

generated with this degree sequence is at least (κ/3)
∑

i ( d̂i

2 ).
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Then for sufficiently large s, there exists a set of indices U ⊆
{1, . . . ,r}, such that |U | = �(

√
s) and ∀k ∈ U,d̂k = �(

√
s).

[The constants hidden in the �(·) notation only hide a
dependence on c and κ .]

The proof of this theorem requires some extremal combi-
natorics and probability theory. We first state some of these
building blocks before describing the main proof. Henceforth,
the assumptions stated in the theorem hold. An important tool
is the Kruskal-Katona theorem that gives an upper bound on
the number of triangles in a graph with a fixed number of
edges.

Theorem 3 (Kruskal-Katona [39–41]). If a graph has t

triangles and m edges, then t � m3/2.
The probability that i and j are connected is well approx-

imated by d̂i d̂j /2s when this is much smaller than 1. But we
can always use it as an upper bound, as the following claim
shows.

Claim 4. Consider three vertices i 
= j 
= k. The probability
that the triangle (i,j,k) forms in the CL graph is

O

(
min

(
d̂i d̂j

2s
,1

)
min

(
d̂i d̂k

2s
,1

)
min

(
d̂j d̂k

2s
,1

))
.

Proof. Consider the pair (i,j ). For a single edge insertion,
the probability that the edge (i,j ) is inserted is 2d̂i d̂j /(2s)2.
Define this to be qij . Note that qij < 0.5. The probability
that the edge is never inserted over s edge insertions is
(1 − qij )s � exp(−qij s/(1 − qij )). Suppose qij s � 0.5, so the
term in the exponent is (strictly) at most 1. Then, this can be
approximated as (1 − qij )s � 1 − qij s/(1 − qij ) � 1 − 2qij s.
Hence, the probability that this edge is inserted is at most
2qij s = O(d̂i d̂j /2s).

When qij s � 0.5, then d̂i d̂j /2s = �(1). The probability
that an edge is inserted is trivially at most 1, so in this case as
well, this probability is O(d̂i d̂j /2s). Combining both cases, the
probability of this edge insertion is at most O(min(d̂i d̂j /2s,1)).

We note that the events corresponding to the appearance of
edges (i,j ), (j,k), and (k,i) are independent in the limit, as
s → ∞. �

We now prove some claims about the expected number of
triangles and the degree sequence.

Claim 5. Let T denote the expected number of triangles.
There exist constants β and c′, depending only on c and κ ,
such that (1) T � β

∑
i d̂

2
i , and (2)

∑
i d̂

2
i � c′s3/2.

Proof. By assumptions in Theorem 2, T � (κ/3)
∑

i ( d̂i

2 ).

For d̂i > 1, ( d̂i

2 ) � d̂2
i /4 (for large d̂i , it is actually much closer

to d̂2
i /2). Hence, T � (κ/12)

∑
i d̂

2
i , and setting β = κ/12

completes the proof of the first part.
Suppose we generate a random CL graph. Let t be the num-

ber of triangles and E be the number of edges (both random
variables). By Theorem 3, t � E3/2. Taking expectations and
noting that E � s, T � E[E3/2] � s3/2. Combining with the
first part of this claim,

∑
i d̂

2
i � (1/β)s3/2. We set constant

c′ = 1/β. �
We come to the proof of the main theorem.
Proof. (of Theorem 2) We choose b to be a sufficiently large

constant, and γ to be sufficiently small. Let � be the smallest
index such that d̂� > b

√
s. For a triple of vertices (i,j,k), let

Xijk be the indicator random variable for (i,j,k) forming a

triangle. Note that T = E[
∑

i<j<k Xijk]. Then we have the
following. We bound E[Xijk] using Claim 4 as follows. As
mentioned earlier, we use � as shorthand for the big-Oh
notation:

E

[ ∑
i<j<k

Xijk

]
=

∑
i<j<k

E[Xijk] �
∑

i<j<k

min

(
d̂i d̂j

2s
,1

)

× min

(
d̂i d̂k

2s
,1

)
min

(
d̂j d̂k

2s
,1

)

�
∑

i<j<k

d̂i d̂j

2s

d̂i d̂k

2s
min

(
d̂j d̂k

2s
,1

)

�
∑

i

d̂2
i

∑
j<k

d̂j d̂k

4s2
min

(
d̂j d̂k

2s
,1

)
.

We now split the second sum based in the case j � � and
j > �. In the former case, we bound the min term by d̂j d̂k/2s

and in the latter case, by 1. Note that in the second sum (below),
k � �, since k > j .

E

[ ∑
i<j<k

Xijk

]

�
∑

i

d̂2
i

⎡
⎢⎢⎢⎣

∑
j,k :
j � �

d̂2
j d̂2

k

8s3
+

∑
j < k :
j > �

d̂j d̂k

4s2

⎤
⎥⎥⎥⎦

�
( ∑

i

d̂2
i

) [(∑
j�� d̂2

j

)(∑
k d̂2

k

)
8s3

+
( ∑

j�� d̂j

)2

4s2

]
.

By the first part of Claim 5, T � β
∑

i d̂
2
i . For convenience,

we replace all the independent indices above by i. Then

β �
(∑

i d̂
2
i

)( ∑
i�� d̂2

i

)
8s3

+
( ∑

i�� d̂i

)2

4s2
(8)

=⇒ β ′ �
(∑

i d̂
2
i

)( ∑
i�� d̂2

i

)
8s3

+
( ∑

i�� d̂i

)2

4s2
.

We use β ′ to denote some constant (that comes from � in
the previous inequality). By Claim 5,

∑
i d̂

2
i � c′s3/2. Fur-

thermore,
∑

i d̂
2
i � b

√
s
∑

i�� d̂i (since for i � �, d̂i � b
√

s).
Combining the two bounds,

∑
i�� d̂i � (c′/b)s. Applying

these bounds in Eq. (8) and setting constant τ appropriately,

β ′ �
c′ ∑

i�� d̂2
i

8s3/2
+ (c′/2b)2,

=⇒
∑
i��

d̂2
i � (8/c′)(β ′ − (c′/2b)2)s3/2 = τs3/2.

(By setting b to be sufficiently large, we can ensure that τ

is a positive constant.) Let �′ be the smallest index such that
d̂�′ � γ

√
m and set s ′ = ∑

�′�i�� d̂i . Then,

τs3/2 �
∑
i��

d2
i �

∑
i<�′

d̂2
i +

∑
�′�i��

d̂2
i

� γ
√

s
∑
i<�′

d̂i + b
√

s
∑

�′�i��

d̂i
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� γ (s − s ′)
√

s + bs ′√s,

=⇒ τs � s ′(b − γ ) + γ s,

=⇒ s ′ � s(τ − γ )/(b − γ ) = �(s).

(Again, a sufficiently small γ ensures positivity.) This means
that the vertices with indices in [�′,�] are incident to at least
�(s) edges. All these vertices have degrees that are �(

√
s),

and hence there are �(
√

s) such vertices. �

IV. THE BTER MODEL IN DETAIL

The BTER model comprises an interconnected scale-free
collection of communities. Intuitively, short-range connections
(Phase 1) tend to be dense and lead to large clustering
coefficients. Long-range connections (Phase 2) are sparse and
lead to heavy-tailed degree distributions. We describe the steps
in detail below.

a. Preprocessing. In the preprocessing step, each node of
degree 2 or higher is assigned to a community. We assume the
desired degree distribution {di} is given where di denotes the
desired degree of node i. Roughly speaking, d + 1 vertices
of degree d are assigned to a community, so that the induced
subgraph on these edges is dense. We sort the vertices of
degree at least 2 in increasing order of degree, so we have
d1 � d2 � d3 . . .. Think of all vertices as being placed in a
single stack (in this order), with vertex 1 at the head. We
read the degree d of the head, and pop d + 1 vertices from
the stack. These vertices form a community. We repeatedly
perform this popping operation, until the stack is empty. The
vertices are all partitioned into these communities. Note that
this process groups together vertices of the same degree except
for the few instances where there is some crossover (i.e., the
last degree-2 vertex is grouped with two degree-3 vertices)
or for high-degree vertices where there are very few of each
degree. If the degree distribution has a scale-free behavior,
the number of communities of a given size is also scale-free.
Since the degree distribution is an input to the model, this step
is relatively straightforward and results in a structure as shown
in Fig. 1(a). We let Gr denote the rth community and ui denote
the community assignment for node i.

b. Phase 1. The local community structure is modeled as an
ER graph on each community. This is illustrated in Fig. 1(b).
The connectivity of each community is a parameter of the

model. By observing the clustering coefficient plots for real
graphs, we can see that low-degree vertices have a much higher
clustering coefficient than higher degree ones. This suggests
that small communities are much more tightly connected than
larger ones, and so we adjust the connectivity accordingly.
Any formula may be used; we have found empirically that the
following works well in practice. We let the edge probability
for community r be defined as

ρr = ρ

[
1 − η

(
log(d̄r + 1)

log(dmax + 1)

)2
]

, (9)

where d̄r = min { di | i ∈ Gr }, dmax is the maximum degree
in the graph, and ρ and η are parameters that can be selected
for the best fit to a particular graph. (These were selected by
manual experimentation for our results, but more elaborate
procedures could certainly be developed.) Why do we choose
such a formula? We observe that in most real networks, the
clustering coefficients of low-degree vertices are quite large.
As the degree increases, this decays and finally reaches very
low values for large degree. This decay appears to happen in log
scale, and hence we use the above formula. In the next section,
we show how well BTER matches the plots for clustering
coefficients of real graphs.

c. Phase 2. The global structure is determined by intercon-
necting the communities. We apply a CL model to the excess
degree, ei , of each node, which is computed as follows:

ei =
{

1, if di = 1,

di − ρui
(|Gui

| − 1), otherwise,
(10)

where |Gr | is the size of community r . Given the ei’s for
all nodes, edges are generated by choosing two end points
at random. Specifically, the probability of selecting node i is
ei/

∑
j ej . It is possible to produce duplicate links or self-links,

but these are discarded. Phase 2 is illustrated in Fig. 1(c).
d. Reference implementation. A MATLAB reference imple-

mentation of BTER is available at Ref. [42]. Scripts are
also provided to reproduce the findings in this paper. In
this implementation, we have taken some care to reduce the
variance in the CL model with respect to degree-one nodes. We
also generate extra edges in Phase 2 to account for expected
repeats and self-loops that are removed. These details are
described in the next section.

(a) Preprocessing: Distribution
of nodes into communities

(b) Phase 1: Local links within
each community

(c) Phase 2: Global links across
communities

FIG. 1. (Color online) BTER model construction. In the preprocessing phase, the nodes are divided into communities (a). In Phase 1,
within-community links are generated using the ER model (b). In Phase 2, across-community links are generated using the CL model on the
excess degrees (c).
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e. Assortativity. Phase 1 of BTER is highly assortative, and
Phase 2 is unassortative (being a CL graph). The ρr parameter
controls the proportion of edges in Phase 1 versus Phase 2. In
general, BTER is an appropriate model when the clustering
coefficient of the real data is large, since that conforms to our
theoretical framework which assumes many triangles. When
the underlying clustering coefficient is extremely low (as in
the case of Internet backbone or peer-to-peer graphs [5]), then
the communities are not expected to have many triangles. As
a consequence, BTER is not a good model for graphs that are
highly disassortative.

V. IMPLEMENTATION DETAILS

We give some specifics of our BTER implementation, but
a reader interested in just a general overview may skip this
section. In Phase 1, we have found it convenient to set ρr = 0
for the last community since it comprises just a few “leftover”
nodes.

We split the calculation of the Phase 2 edges into three
subphases so that we can specially handle the degree-1 edges.
The variance for degree-1 vertices in the CL model is high,
so we set aside a proportion of these vertices to be handled
“manually.” Let w denote the number of degree-1 vertices,
and assume the vertices are indexed from least degree to
greatest. By default, 75% of the degree-1 vertices are handled
“manually” (the exact proportion is user definable); let p =
�0.75w� denote this quantity where �·� denotes nearest integer.
We update ei as follows:

ei ←

⎧⎪⎨
⎪⎩

0, for 1 � i � p,

1.10, for p + 1 � i � w,

ei, otherwise.

This update removes the first p nodes from the CL part and also
slightly raises the probability of an edge for the remaining w −
p degree-1 nodes. This modification helps to balance out the
fact that some nodes of degree greater than 1 (in expectation)
become degree-1 nodes in the final graph, so we need some of
the degree-1 nodes (in expectation) to become higher degree
in the final graph.

In Phase 2a, we set aside q � p (q even) degree-1 vertices
to be connected to other degree-1 vertices. This value can be
specified by the user or defaults to

q = 2

⌊
p2

2
∑

i di

⌉
,

which is the expected number of degree-1-to-degree-1 edges
expected in the CL model. This can be accomplished by ran-
domly pairing the selected vertices. In all of our experiments,
we used q = 0.

In Phase 2b, we manually connect the remaining (p − q)
vertices to the rest of the graph. For each degree-1 vertex, we
select an end point proportional to ei .

In Phase 2c, we finally create the CL model. We modify
the expected degrees to account for the edges used in Phase
2b and to account for duplicates. Thus, we update ei ← ηei

where

η = 1 − 2
p − q

p − q + ∑
i ei

+ β,

where β is the proportion of duplicates. We use β = 0.10 in
our experiments. The total number of edges generated in Phase
2c (including repeats and self-edges, which are discarded) is
�∑i ei/2�.

VI. RESULTS

We consider comparisons of the BTER model with four
real-world data sets from the SNAP collection [43]. All the
graphs are treated as undirected. The number of nodes, edges,
and the clustering coefficient of each graph are shown in
Table I.

We compare BTER with the real data as well as the
corresponding CL model as a baseline. The data are briefly
summarized as follows:

(1) ca-AstroPh: Fig. 2 shows results on a collaboration
network on 124 months of data from the astrophysics section
of the arXiv preprint server. Here, the edge probabilities in the
communities are given by Eq. (9) with ρ = 0.95 and η = 0.05.

(2) soc-Epinions1: Fig. 3 shows results on a who-trusts-
whom online social (review) network from the Epinions Web
site. Here, the edge probabilities in the communities are given
by Eq. (9) with ρ = 0.70 and η = 1.25.

(3) cit-HepPh: Fig. 4 shows results from a citation network
on the high energy physics phenomenology section of the
arXiv preprint server. In this case, we use an alternate formula
for ρr as follows:

ρr = 0.7

[
1 − 0.6

(
log(d̄r + 1)

log(dmax + 1)

)3
]

.

This is to ensure a faster decay of clustering coefficients.
(4) ca-ContMat: Fig. 5 shows results on a collaboration

network on 124 months of data from the condensed matter
section of the arXiv server. Here, the edge probabilities in the
communities are given by Eq. (9) with ρ = 0.95 and η = 0.95.

In the leftmost plots of Figs. 2–5, we see the comparison
of the degree distributions. For ease of visualization, we have
binned them logarithmically. As expected, both BTER and CL
match the degree distribution, as they have been constructed
to do so. The degree distributions do not necessarily conform
to a standard degree distribution such as log-normal or power
law. For example, the degree distribution for ca-AstroPh has a
slight “kink” midway.

The difference between BTER and CL is highlighted
when we instead consider the clustering coefficient, shown
in the center plots of Figs. 2–5. (Again, we have binned
logarithmically by degree.) As noted previously, CL cannot
have both a high clustering coefficient and a heavy tail, and
this is evident in these examples. BTER, on the other hand, has
a very close match with the observed clustering coefficients for

TABLE I. Data sets for empirical validation.

Vertices Edges C

ca-AstroPh [22] 18 772 396 100 0.32
soc-Epinions1 [44] 75 879 811 480 0.07
cit-HepPh [45] 34 546 841 754 0.15
ca-CondMat [22] 23 133 186 878 0.26
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FIG. 2. (Color online) Properties of ca-AstroPh, a co-authorship network from astrophysics papers compared with the BTER and CL
models. Observe the close match of the clustering coefficients of the real data and BTER, in contrast to CL. Additionally, the eigenvalues of
the BTER adjacency matrix are close to those of the real data.

all of these graphs. The dense ER graphs ensure that all nodes
have high clustering coefficient. Note that the real graphs arise
from diverse settings, and yet BTER matches the clustering
coefficients quite well. We stress that this is a semilog plot, so
the matches are extremely close.

The importance of matching the clustering coefficients
becomes apparent when considering other features of the graph
such as the eigenvalues of the adjacency matrix, as shown in
the rightmost plots of Figs. 2–5. For both ca-AstroPh, cit-
HepPh, and ca-cond-Mat, the BTER eigenvalues are a much
closer match than the CL eigenvalues because the community
behavior is significant (respectively, C is 0.32,0.15,0.26).
Indeed, barring the first two or three eigenvalues, BTER
matches the remaining eigenvalues extremely closely. For
soc-Epinions1, the difference between the models in terms
of the eigenvalues is less dramatic because the community
behavior is much less evident (C = 0.07); nonetheless, BTER
is still a reasonable match.

The experimental results on these graphs are consistent with
our theory. The leftmost plots show that both CL and BTER
can match the degree distributions of the original graph, as
expected. Again, the clustering coefficient plots in the middle
highlight the strengths of BTER, and how it differs from CL:
BTER matches the clustering coefficients closely, while CL

does not produce any significant number of triangles. The
rightmost column shows that the eigenvalues of the adjacency
matrices of BTER are closer to those of the original graph than
those produced by CL.

VII. DISCUSSION

We define a community to be a subgraph that is internally
well modeled by CL (and thus has no further substructure) and
has many triangles. We prove that any community must contain
a dense ER subgraph. Note that this automatically implies
that these communities have a high density of links. Our
alternative definition of community may help in simplifying
and mathematically formalizing community structure.

Consider graphs with high clustering coefficients. Any
graph model that captures community structure in these graphs
must contain dense substructures in the form of dense ER
graphs. This observation leads naturally to the BTER model,
which explicitly builds communities of varying sizes and
simultaneously generates a heavy tail.

Fitting the BTER model to real-world data is straightfor-
ward. The community sizes and composition in BTER are
determined automatically according to the degree distribution.
We currently assume that all nodes in a community have
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FIG. 3. (Color online) Properties of soc-Epinions1, a social network from the Epinions Web site, compared with the BTER and CL models.
In this case, the clustering coefficients are much smaller overall, but the BTER model is still a closer match to the real data than CL in terms of
both the clustering coefficient and the eigenvalues of the adjacency matrix.
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FIG. 4. (Color online) Properties of cit-HepPh, a citation network of High Energy Physics papers, compared with the BTER and CL models.

(approximately) the same expected degree. Undoubtedly, this
is an unrealistic assumption, but the variance of the model
ensures that the degrees within a community vary considerably
and Phase 2 adds connections between nodes of widely
varying degrees. The connectivity of each ER block is a
user-tunable parameter that can be adjusted to fit observed
data. We currently prescribe a simple formula (9) and fit by
trial and error, but the procedure could certainly be automated.
Moreover, there is no particular requirement that ρr be exactly
the same for all communities with the same d̄r (minimum
degree) nor that ρr be computed by a deterministic formula.

Our experimental results show that BTER-generated graphs
have properties that are remarkably similar to real-world data
sets. We contend that this makes BTER an appropriate model
to use for testing algorithms and architectures designed for
interaction graphs. In fact, BTER is even designed to be
scalable. In particular, in Phase 2 we could compute the
exact excess degree and use a matching procedure to complete
the graph. The advantage of computing the excess degree in
expectation is that it is more easily parallelized. In that case,
the assignment to communities, the community connectivity,
and the expected excess degree can all be computed in the
preprocessing stage. Both Phase 1 and Phase 2 edges can be
efficiently generated in parallel via a randomized procedure.
Therefore, the BTER model is suitable for massive-scale
modeling, such as that needed by Graph 500 [26]. The details
of this implementation are outside the scope of the current
discussion but will be considered in future work. As we
mentioned earlier, BTER does not model disassortative graphs,

and it would be very interesting to develop our theory for those
graphs as well.

Another topic of future study is to directly verify our
theoretical hypothesis on real graphs by finding dense ER
subgraphs. Our comparisons clearly show that BTER matches
real graphs, so this suggests that dense ER subgraphs do exist
as we propose. It is not obvious how to design algorithms for
verifying the existence of dense ER graphs, but our proofs do
suggest a scheme. In a community with s links, we expect

√
s

vertices of degree
√

s (up to some constants) to form a dense
subgraph. We may be able to empirically find such structures.

We feel that this work can play an important role in the
algorithmic task of community detection, which is related
to the problem of finding dense ER subgraphs. These dense
ER subgraphs, according to our hypothesis, form the “heart”
of communities. This could be a useful guide to current
algorithms. For example, agglomerative community finding
algorithms might want to use these dense subgraphs as seeds.
More importantly, we may be able to use this theory to
mathematically validate community detection algorithms.

Our formalism captures the more advanced notion of link
communities [46] (where edges, rather than vertices, form
communities). This allows vertices to participate in many
communities. The notion of communities uses modules over
internal degrees, so one can easily imagine a vertex in many
communities. Theorem 1 is still true, and we still get a
scale-free collection of ER graphs which may share vertices.
Thus, another interesting direction is to extend BTER to link
(and hence overlapping) communities.
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FIG. 5. (Color online) Properties of ca-CondMat, a co-authorship network of Condensed Matter physics, compared with the BTER and CL
models.
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