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A Tensor is an d-Way Array

dth-order Tensor

Vector
d=1

Matrix
d =2

3rd-order Tensor
d=3
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Tensor Decomposition: A Mathematical Tool @ e, (8
fOr Data Analysis Laboratories |

Includes visualization,

Express the tensor as the clustering, filling in Related COI‘]CEptS
sum of meaningful parts, Dat missing entries, etc. for Matrices
which is the starting g a.
point for data analysis Analysis « Principal component
activities analysis (PCA)
« Singular value
decomposition (SVD)
« Independent component
analysis (ICA)
: * Nonnegative matrix
Mathematical factorization (NMF)

Tool

« Sparse matrix

Mathematics play a role in.... -
factorization

* Defining the error metric
* Developing efficient algorithms

* Matrix completion

1/11/2018 Kolda - SIAM Invited Address @ JMM18



Building Block for Decomposition: Rank-One

Tensors = Vector Outer Products
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Matrix Version (2-way)

Given two vectors:
acR™becR"
Their outer product is:
X =aob ec¢R™"
Each entry is given by:

(i, §) = a(i) b(j)

matr

Tensor Version (3-way)

Given three vectors:
acR" beR" ceRF
Their outer product is:
X =aoboc
Each entry is given by:

x(i, j, k) = a(i) b(j) c(k)
C
&£ .

Kunk-one

lensor

c RMXnXp

a

Tensor Version (d-way)

Given d vectors:
akER”’“, k:1,...,d

Their outer product is:

XNy

x:alo---oad ER?’MX..

Each entry is given by:

(i1, ...,1q) = a1

Vi &aa//z”g/ //elf&’

é(/@//‘d/

But the math s
st/ f/}(e/

1/11/2018
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Matrix Decomposition: @ = 0
Detecting Low-Rank Structure aborsnris

Data Low-Rank Mode! — S— —
_ | + + ot
a, a, a,
x(i,j)) ~  m@Gj) =a@1)b(1) +a(i,2)b(,2) + - +ai,r)b(,r) = ia(z,e) b(j, )
=1

r

Matric Notatin = X ~ M = Z a,ob, = ABT = [A,B]
=1

Eerily powerful tool for modeling data!
Google search for “low-rank structure”

turns up 5,590,000 results, and Google
Sum of Squared . .. »29U, ’
: Z( x(i,j) —m(@i,j))? = |IX - M]|% Scholar yields 127,000 papers!
ij

Errors (SSE):

Kolda - SIAM Invited Address @ JMM18
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CP Tensor Factorization (3-way): @ e, (B
Detecting low-rank 3-way structure labortores =7

Data Low-Funk Model
Ci Co / _Cr )
/ b, / by / b, ‘&/”W”e”t
X M = + + -
Jaj | ao Qafr )

x(i,j, k) ~ m(i,j, k) =a(i,1)b(,Dc(k, 1)+ a(i,2)b(j,2)c(k,2) + -+ a(i,r)b(,r)c(k, 1)

-
Texsor Notation = X~ M= Z agobgoc, = [[A’ B, C]] Potentially an even more powerful tool for

=1 /4-057/‘ / modeling data! But still new. Google search
Matrices for “low-rank tensor structure” turns up only

S fsS d . L 9 550,000 results, and Google Scholar yields a
[ UM oY SAUBTEE N " ((4, 4, k) — mli, 4, k)P = X — M”ZJ

Errors (SSE): < - mere 14,500 papers.
]
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CP first invented in 1927

Frank Lauren Hitchcock
MIT Professor
(1875-1957)

1/11/2018

THE EXPRESSION OF A TENSOR OR A POLYADIC AS
A SUM OF PRODUCTS

By Fraxx L. Hiteroock

1. Addition and Multiplication.

Tensors are added by adding corresponding components. The
product of a covariant tensor A; .., of order p into a covariant
tensor By ,..q,, of order g is defined by writing

Ad e iBiprn ip g =Cinniy g &)
where the produet C; ... _ is a covariant tensor of order p+q.
When no confusion results indices may be omitted giving

AB=C (19

equivalent to the 7" equations (1). Boldface type is convenient
for indicating that the letters do not denote merely numbers or
scalars. Products of contravariant and of mixed tensors may be
similarly defined.

A partial statement of the problem to be considercd is as follows:
to find under what conditions a given tensor can be expressed as
a sum of products of assigned form. A more general statement
of the problem will be given below.

2. Polyadic form of a tensor.
Any covariant fensor A; .., can be expressed as the sun of
a finite number of tensors each of which is the produet of $ covari-

ant vectors,
ji=h
= Z 0B " B @

A:‘l..'

p

where a,j, i, etc., are a set of hp covariant vectors. When the in-
dices 7 + + 7, can be omitted this may be written

F=h

A=}Eiﬂ.[jﬂgj - Apj. (2.)

The right member is now identical in appearance with a Gibbs

Sandia
National
Laboratories

F. L. Hitchcock, The Expression of a Tensor or
a Polyadic as a Sum of Products, Journal of
Mathematics and Physics, 1927

2. Polyadic form of a tensor.
Any covariant tensor A; .. 4
a finite number of tensors each of which is the product of ¢ covari-

ant vectors,

can be expressed as the sum of

i=h

"ﬁlil v Tp J aljr '[:l {}_Ej' 1“3 ot apj’ Z‘p (2)

= ¥
T e

14

where 2,5 ; , etc,, are a set of hp covariant vectors. When the in-

dices 7; * + 7, can be omittzd this may be written
i=h
A= .Sla;jagj ‘e ap. _ (2,)

J=

Kolda - SIAM Invited Address @ JMM18



CP Independently Reinvented (twice) in 1970

PSYCHOMETRIKA—VOL. 35, No. 3
sepTEMBER, 1970

ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMEN-
SIONAL SCALING VIA AN N-WAY GENERALIZATION OF
“ECKART-YOUNG" DECOMPOSITION

J. Douvaras Carrour AND Jin-JiE CHANG

BELL TELEPHONE LABORATORIES
MURRAY HILL, NEW JERSEY

An mdmdunl dlﬂemneas model lnr multidimensional sealing is out-
d diffe to weight the several

lined in which i
of & | space”. A pondi mekhod
D“Eml’u ;nlyn-’ d:z“doeo tion of three- [( h;dn )
‘oung mposition of wn or r-Way,
In the present case this decomposition is applied m & derived three-

e{ table of scalar products between stimuli for individuals. This analysis
matrix and a subjects by dnnen-
nona mM.nx of weights. This method is illustrated with dats on ‘auditory
stimuli and on perception of nations.

Thm has been an interest for some time m the queshon of dealmg
with i 1 diff among subj in
on which a multidimensional sealing of stimuli is to be based. Kruaknl [1968]
and McGee [1968] have both incorporated different ways of dealing with
individual differences into their sealing procedures. Tucker and Messick
[1963] proposed an approach, which they called “Points of view analysis,”
which is probably the most widely used method for dealing with such individ-
ual diff In this method, i lations are first computod betwem
subjects (based on their similarity jud, ts) and the 1
matrix is factor analyzed to produce a subject space. One t.hen looks for
lusters of subjects in this subject space, andxfmchclustersmfound
proceeds in one way or another to define “idealized” subj
to clusters. (The “idealized subject” for a given cluster may be deﬁnod for
example, by finding the pattem of similarity judgments corresponding to a
hypothetical subject at the cluster centroid, by choosing the actual subject
closest to that centroid, or, most simply, by averaging the similarity judg-
ments for subjects in the given cluster.) The similarities for these “idealized
subjects” are then, individually and independently, subjected to multi-
dimensional scaling.
This approach has been criticized by a number of people, most recently
by Ross [1966] (see CIiff, 1968, for 8 reply to Ross’s criticism and a further
ion of the “idealized Is” inter jon of “Points of view
283

J. Douglas Carroll
Bell Labs
(1939-2011)

CP: CANDECOMP/PARAFAC
CP: Canonical Polyadic

Jih-Jie Chang
Bell Labs
(1927-2007)

Richard A. Harshman
Univ. Ontario
(1943-2008)

In 2000, Henk Kiers proposed
this compromise name

2010: Pierre Comon, Lieven Delathauwer,
and others reverse-engineered CP,

revising some of Hitchcock’s terminology

Sandia
National
Laboratories

PARAFAC: Parallel Factors

d here to make it

NOTE: This 1pt was originally published n 1970 and 1s reprod

more accessible to interested scholars. The original reference is

Harshman. R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-
84. (University Microfilms, Ann Arbor, Michigan, No. 10.085).

FOUNDATIONS OF THE PARAFAC PROCEDURE: MODELS AND CONDITIONS

FOR AN "EXPLANATORY" MULTIMODAL FACTOR ANALYSIS

by
Richard A. Harshman

UCLA
Working Papers in Phonetics
16

December, 1970

Many thanks to the following persons for helping me learn about Jih-Jie Chang: Fan Chung, Ron Graham, Shen Lin (husband), May Chang (niece), Lili Bruer (daughter).
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Example: CPR for Mouse Neural Activity

A. H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M. Schnitzer, T. G. Kolda, S.
Ganguli. Unsupervised Discovery of Demixed, Low-dimensional Neural Dynamics across Multiple
Timescales through Tensor Components Analysis. bioRxiv, 2017. https://doi.org/10.1101/211128

1/11/2018 Kolda - SIAM Invited Address @ JMM18


https://doi.org/10.1101/211128

New Devices Enable Measuring Multiple @ e, (W
Neurons Simultaneously Laboratories

One Trial

Thanks to Schnitzer Group @ Stanford 300 neurons X 120 time bins

Mark Schnitzer, Fori Wang, Tony Kim

Microscope by

Inscopix
One Column - 8
of Neuron x c
mouse Time Matrix 3
. o ”
in “maze = S
»

X 600 trials (over 5 days)

Williams et al., bioRxiv, 2017, DOI:10.1101/211128

1/11/2018 Kolda - SIAM Invited Address @ JIMM18



Sandia -
National | /= 2=/
Laboratories =\

Trials Vary Start Position and Strategies

trial 1 trial k trial K
g \ II: [ 1] lI I. III (] ] ll [ | I. IIII [ 1] Il
9 1 I'Il ] 1 I' II' 1 I'Il I|
3 n i 1 [ ] i L} [ ] i n
o)
C Ll (1]
w
c W
o ANSNAA
8 -M\'\
c | ™\ ’
—N\A /_’\5
. K\
time

note different patterns on curtains

* 600 Trials over 5 Days

e Start West or East Allocentric Condition Egocentric Condition
o ) __e.g. gosouth __e.qg. tun right__
e Conditions Swap Twice
s Always Turn South L
5

< Always Turn Right le | I(@ D]I |

s Always Turn South

Williams et al., bioRxiv, 2017, DOI:10.1101/211128
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8-Component CP Decomposition of Mouse @ e,
Neuron Data Laboratories

Neuron Time

1.00 bowsdbotibal oot ik bl il

0.99 MMMA!U‘

0.76

:i;‘ ) mﬁﬁ

0.67
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8-Component CP Decomposition of Mouse @
Neuron Data
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8-Component CP Decomposition of Mouse @
Neuron Data
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8-Component CP Decomposition of Mouse @
Neuron Data
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8-Component CP Decomposition of Mouse @
Neuron Data
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Randomized Least Squares for
CP Decomposiition

C. Battaglino, G. Ballard, T. G. Kolda. A Practical Randomized CP Tensor Decomposition.
arXiv:1701.06600, 2017.
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Fitting CP

' Jaq

Jaz

min ||X — M||* s.t. M = [A, B, C]

AB.C

v

min
A,B,C <
17k

1/11/2018

2
(ﬂfz’jk — E aiebjeciae)
¢

Kolda - SIAM Invited Address @ JMM18
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Rank () NP-Hard: Even best
low-rank solution may not
exist (Hastad 1990, Silva &
Lim 2006, Hillar & Lim 2009)

Not nested: Best rank-(r-1)
factorization may not be

part of best rank-r
factorization (Kolda 2001)

Not orthogonal: Factor
matrices are not orthogonal
and may even have linearly
dependent columns

Essentially Unique: Under
modest conditions, CP is

unique up to permutation
and scaling (Kruskal 1977)
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Fitting CP: Alternating Least Squares @ aboratores

C1 Co Cp

/ b, / b2 / b,

=
Q
+

Repeat until convergence:
| al Jag Ay

Step 1: mm Z (ngk Z Ay bje Ckf)
2
Aménc | — M||* s.t. M =[A,B,C] Step 2: mmZ(mwk Z @ip b Ckg)
17k
@ Step 3: mm Z (:C@Jk Z 27 bjg Ckﬁ)
2
Arfl]?{I,lC (:rz'jk — zg: aiebjeckﬁ)

ijk

Nonconvex problem with convex subproblems.
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Solving the Least Squares Problem

2
min E (:c@-jk - E aio bje Ckg) > mAin X1y —A(CO B)||%
iik ¢
“right hand sides” “matrix”
‘ ‘ (c1 ®by)’
X —~ "’“ (e @b,
‘ Khatri-Rao Product
Matrix Unfolding A (COB)'
3-way case n X n? nxr r X n?
d-way case n xn4-1 nxr rx nd-1

Short & Very Wide Matrix

1/11/2018 Kolda - SIAM Invited Address @ JMM18



CPRAND: Randomized Matrix Least Squares @ e, (B
Su bprOblem Laboratories \

1X(1)S - A [(CoB)'S]|%

nxp nXxr rXxXp

Each column in
the sample is of

— the form:
(C(£,:) .* B(k,:))

Two “tricks”
1. Never permute elements of tensor X intro n X n? matrix form
2. Never form full Khatri-Rao product of size r X n?

CPRAND-MIX: Apply fast Johnson-Lindenstrauss Transform to mix the data in each
direction to ensure “incoherence” — introduces some preprocessing cost

Battaglino, Ballard, Kolda, A Practical Randomized CP Tensor Decomposition, Jan 2017, arXiv:1701.06600

7/25/2017 Kolda @ ILAS17
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Convergence Check Become the Bottleneck! @ aboretones

C1 Co Cp

/ b, / b2 / b,

Repeat until convergence:

Ve.ry fast W.ith .. Step2: mln Z (zcwk Z Ay bjg Ckf)

matrix sketching ijk

Step 3: mm Z (x’tjk Z 27 bjg Ck:ﬁ)

——

1/11/2018 Kolda - SIAM Invited Address @ JMM18
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16000 samples < 1% of full data

2
F(A,B,C) = Z (xqjjk - Z a»iebjecke) F—F)|
¢

Randomizing the Convergence Check

-3
ijk 7 < 10
:l'j - | .
- Estimate convergence of = - Sampled -
- function values using small *g u i
. . o| random subset of elements 5102 b -
o ) : : a E
S in function evaluation - B -
. (use Chernoff-Hoeffding to @ a .
bound accuracy) g
a 10! £ E
= - -
g | :
2 a u -
F(A,B,C) =w Z (Cﬁz‘jk — Zaifbjﬁckﬁ) & ' ' ‘
iikeQ , 20 40 60

Hth-Order Tensor Size

Battaglino, Ballard, & Kolda 2017
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Application to Hazardous Gas Dataset

71 Sensors X 5000 Timepoints X 5 Temperatures X 140 Experiments =~ 2 GB

Room Conditions:

Chemical Source R .
............. P P2 P3 P4 P P 'Eﬁﬁffoﬁi'l‘éﬁl'é‘é?:&%?“"" _speed’ CP-ALS:
r,—l e A s el 65 seconds

C
g - - I JA Fan
© g I .o 12V, 4.8A, 1500~5500rpm
S o
(&) - -
E e . Sl CP-ALS-RAND:
o —» Outle
- 0 27 seconds
©
©
£
=
............. - — )
Position label | P1 P2 P3 P4 P5 P6

x — azisdistance (m) | 0.25 0.5 0.98 1.18 140 1.45

A. Vergara, J. Fonollosa, J. Mahiques, M. Trincavelli, N. Rulkov and R. Huerta, On the performance of gas sensor arrays in open
sampling systems using Inhibitory Support Vector Machines, Sensors and Actuators B: Chemical, 2013, doi:10.1016/}.snb.2013.05.027

1/11/2018 Kolda - SIAM Invited Address @ JMM18 32
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Factors from Gas Dataset @ ‘aboratories

Sensor . | _Time _ Heat Experiment

1.00 M | | | | .................. ..................
0.67 hh L ___/ ™~

—/" \
0.51 .

— "
039 ’.l.lnllnlq'.l.l.lll-l.ﬂ.,w
0.21 ’.-.d-l.‘-ﬂ-,l“‘l
0.17 ‘—_‘—ﬁ-lI][.-_“ // \

O16IH‘AJHIJH
0 20 40 60 0 1000 2000 3000 4000 500012345 O 20 40 60 80 100 120 140
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@)

Experiment

Factors from Gas Dataset

. Matrix of size 140 X 7 [

e S PPy

1/11/2018 Kolda - SIAM Invited Address @ JMM18 34



Viz of Experiment Factor Matrix Using PCA @ il (I
P r Oj ec ti on Laboratories

Experiments (140) projected onto 2D space using PCA

; CO-4000 ‘
‘ Ethylene-500
Methane-1000
Methanol-200

'y ' b

Acetone-2500
Ammonia-10000

L X X N XN J

*
o » ¢
4 Correspondence 4
’ to gas types! [ ’
* ’ * ’
* - *
¥ . -}.t .

*
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Generalized CP Decomposition

Cliff Anderson-Bergman, J. Duersch, D. Hong, T. G. Kolda, Generalized Canonical Polyadic Tensor
Decomposition, 2018 (coming soon)

1/11/2018 Kolda - SIAM Invited Address @ JMM18
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Generalizing the Goodness-of-Fit Criteria

Anderson-Bergman, Duersch, Hong, Kolda 2017

1/11/2018 Kolda - SIAM Invited Address @ JIMM18
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“Standard” CP via Maximum Likelihood {aboratories

Probability Distribution Function:

/ / / . o Normal-distributed with constant o
e e NN Gaussian Probability o o
= Density Function (PDF A A 1= 21, 0=025
* - > M u toot Y (PDF) “ ho ot o] |
e~ (@—m)?/20

Typically: Consilcljer glata t.o I?’e Minimize negative log likelihood with 0al
low-rank plus “white noise Wijx = M;jx and o constant for all entries: ~ ,| U
Tijk = Mijk + €ijks €5k ~ N(0,0) (x; SR
ik T ngk
~log(£(M) = 3 N
Equivalently, Gaussian with mean m,;, ijk
' — )2
Tijk N(mijk, O') mlnF(M) — Z(mwk ngk)
ijk

Anderson-Bergman, Duersch, Hong, Kolda 2017
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“Rayleigh CP” with Linear Link
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What if the data is nonnegative (x;,= 0)?

Assume data is
Rayleigh-distributed.

Lijhk ™ Rayleigh(mijk)

R
v
=
|
+
+

Probability Distribution Function:

/ ] | Ray!eigh-dlistriblljted |
Rayleigh Probability of —tl
Density Function (PDF) ) “ ——o= 00
L ow?/(20%) ‘|
o2 .
I
Minimize negative log likelihood 1
with aijk = mijk: ) . ‘ .
0 0.5 1 15 2 2.5 3
Liik
— log(L(M M—I— 2log myjk + 5 3
17k ij',
min F'(M) = E :210gmz’jk‘|‘2 5 -
ijk Mijk E(%gk) — Mijk 2

1/11/2018
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Boolean CP” with Odds Link

Random Coin Flip: Probability versus Odds
p € [0,1] : probability of 1

* L r = 0: odds ratio of 1
r = L = =
1—p 1+r
What if data is binary (x;j, € {0,1})?
dds ratio of 1 Probability M r (1T
m;j,= odds ratio or X, = 1. robability Mass X(1 — n)1—x ( )
Distribution (PMF) p (1 p) < 1+7r 1+7r
Lijhk ™ Bernoulli(mijk/(l + mmk))
E(z;) = — 4k .
tJ 14 Mijk min F(M) = Z log(mijk + 1) — Tijk log Mk
ijk

1/11/2018 Kolda - SIAM Invited Address @ JIMM18



Generalized CP
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Standard (x,m € R): f(x,m) = (x — m)?

s.t. M =[A,B,C]

Rayleigh (x,m € R,): f(x,m) = 2 log(m) + x%/(2m?)

Boolean-Odds (x € [0,1], m € R,): f(x,m) = log(m + 1) — x log(m)

Poisson (x € N,m € R,): f(x,m) = m — x log(m)

Similar ideas have been proposed in matrix world,
e.g., Collins, Dasgupta, Schapire 2002

Algorithm Notes

Can be solved via alternating or all-at-
once optimization

v Fewer knobs to tweak for all-at-once
v Prgfgr all-at-once if any data is
missing
Gradient has an elegant form
v Involves “MTTKRP”

Missing data is handled by omitting from
the sum in the objective function

v Introduces sparsity into the gradient
computation

Large-scale problems requires stochastic
approach

v’ Stratification needed for sparse
problems

Chi & Kolda 2012; Anderson-Bergman, Duersch, Hong, Kolda 2017

1/11/2018
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Mouse

Neuron

San_diaI
Data USing RaVIEigh (Nonneg) @laboratories

Time Trial (orange/green = start east/west, circle/square = end sorth/nouth, filled = correct)
I [ ]

—

Start West

wlidilo bl

bl e ULl )

0 100 200

1/11/2018

End North
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- 5 @ ﬁgtl}gﬁal_
GaS Data USlng Ray|e|gh Laboratories

Sensor ' Time Heat Experiment

e et i

0.41

T O : : : :
0.36 f \
0.33 | h ‘

0.13 lI I \

0 20 40 60 0 1000 2000 3000 4000 500012345 O 20 40 60 80 100 120 140
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A Sparse Binary Dataset

= UC Irvine Chat Network

= 4-way binary tensor
= Sender (211)
= Receiver (211)
= Hour of Day (24)
= Day (196)
= 14,849 nonzeros (very sparse)

- ol

= Goodness-of-fit (Boolean-odds):

f(x,m)=1log(m+1) —xlogm

= Use GCP to compute rank-12
decomposition

Opsahl, T., Panzarasa, P., 2009. Clustering in weighted networks. Social Networks 31 (2), 155-163, doi: 10.1016/j.socnet.2009.02.002

Kolda - SIAM Invited Address @ JMM18
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Binary Chat Data using Boolean CP @ aortones s

Sender (sorted by component) Receiver (sorted as Sender) ___ Time of Day . . Day

E

L.

0.63

WY TS YO TS PR D JJM.LL (PR I 1 % AT B | J-IAJM_J.JJ.I.“L.U ___lllll.lll.l.l.lllllll-_____ .______.u—q N
0.60

o . J.L b o R VL ] [ —

ll. I A 2 l; " Jliadoas e baall

0 50 100 150 200 O 50 100 150 200 6 12 18 24 0 50 100 150
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SIAM Journal on Mathematics of Data Science

e New journal, launching in Spring 2018

Focus

e Role of applied mathematics in data science, as
complemented and intertwined with other key areas:
statistics, computer science, network science, signal
processing, etc.

Editor in chief: Tamara G. Kolda, Sandia

Section editors

e Alfred Hero, Michigan

e Michel Jordan, Berkeley
e Robert Nowak, Wisconsin
e Joel Tropp, CalTech




Sandia
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CP Tensor Decomposition is a key tool for data analysis
= Latent factor analysis
= Dimensionality reduction
= Randomized methods enable scaling
= |nitial evidence for increased robustness in global optimization

= Many, many algorithm and implementation details

= Flexible data type via Generalized CP
= Nonnegative, Boolean, Poisson data

=  Many open math problems remain!

= Links

= Tensor Toolbox for MATLAB: www.tensortoolbox.org

= Parallel CP and GCP implementations: https://gitlab.com/tensors/genten

= My web page: www.kolda.net

Thanks to SIAM for the invitation to speak and to YOU, the audience, for your attention!
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