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Abstract. A common operation in scientific computing is the multiplication of a sparse, rectan-
gular, or structurally unsymmetric matrix and a vector. In many applications the matrix-transpose-
vector product is also required. This paper addresses the efficient parallelization of these operations.
We show that the problem can be expressed in terms of partitioning bipartite graphs. We then
introduce several algorithms for this partitioning problem and compare their performance on a set
of test matrices.
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1. Introduction. Matrix-vector and matrix-transpose-vector products that re-
peatedly involve the same large, sparse, structurally unsymmetric or rectangular ma-
trix arise in many iterative algorithms. Examples include algorithms for solving linear
systems, least squares problems, and linear programs. To efficiently implement these
types of methods in parallel, the nonzeros of the sparse matrix must be distributed
among processors in such a way that the computational work per processor is bal-
anced and the interprocessor communication is low. This can usually be achieved by
an appropriate partitioning of the matrix. Specifically, given a structurally unsym-
metric or rectangular matrix A, the key is to find permutations P and Q so that
the nonzero values of PAQ are clustered in the diagonal blocks as illustrated in Fig-
ure 1.1. As we show in section 3, this nearly block diagonal structure helps reduce
the communication cost in matrix-vector products. Furthermore, by requiring that
the block rows (or block columns) have approximately the same number of nonzeros,
the floating point operations are well balanced among processors.1

Despite the utility of rectangular or structurally unsymmetric matrix partitioning,
little work has been done in this area until recently. If the matrix is square and
structurally symmetric, the problem can be expressed in terms of graph partitioning,
and a number of good algorithms and software tools have been developed for this
use [24, 29, 45]. These methods can be used for partitioning a square, structurally
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Fig. 1.1. Matrix before and after partitioning.

unsymmetric matrix A by considering the sparsity pattern of the A + AT matrix.
But this trick is appropriate only if the matrix is nearly structurally symmetric. The
square symmetric methods are not applicable to rectangular matrices.

In section 3, we describe the matrix-vector and matrix-transpose-vector kernels
and show how the partitioning affects communication. Further, we show that we
need only to use the row partition to maintain balance in the number of nonzeros
per processor and consequently have some leeway in the column partition that we
can exploit for other purposes. For example, in the case of preconditioned iterative
methods for structurally unsymmetric matrices, we can use this freedom to find a
partition that is good for both the matrix and its explicit preconditioner. We discuss
this further in sections 2–4.

In section 4, we describe the relationship between matrix partitioning and graph
partitioning. An m× n rectangular or structurally unsymmetric matrix corresponds
to a bipartite graph on m + n nodes with the number of edges equal to the number
of nonzeros in the matrix. We show that the matrix partitioning problem can be
described as a bipartite graph partitioning problem in which edge cuts are related
to parallel communication and constraints on the partition sizes correspond to work
load per processor.

In section 5, several algorithms for partitioning the bipartite graphs are pre-
sented. Modifications of the well-known spectral [39], Kernighan–Lin [31]/Fiduccia–
Mattheyses [12], and multilevel [6, 26, 29, 30] methods are given for the bipartite
graph model. The modification of the spectral method was previously introduced by
Berry, Hendrickson, and Raghavan [5]. Further, the alternating partitioning method
of Kolda [33] is presented; this method is specific to the bipartite case.

Finally in section 6, we measure the performance of various methods for par-
titioning rectangular or structurally unsymmetric matrices. We compare different
methods on a collection of matrices from least squares, linear programming, trun-
cated singular value decomposition (SVD), and preconditioned linear systems. Our
results indicate that the best approach is generally the multilevel method with either
Fiduccia–Mattheyses or alternating partitioning combined with Fiduccia–Mattheyses
refinement.

Several authors have used partitioned bipartite graphs of matrices for different
parallelization objectives. Ferris and Horn [11] find vertex separators in the bipartite
graph to reorder the matrix into arrowhead form. This is useful in the parallelization
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of linear programs and other optimization problems. Coon and Stadtherr [8] use a
bipartite graph partitioning model to identify parallelism in sparse Gaussian elimi-
nation. Neither of these efforts addresses the problem of parallelizing matrix vector
products.

Previous attempts to address the general matrix partitioning problem for matrix
vector multiplication include the work of Kolda [33] and an earlier report on this
research [23].

The authors have recently become aware of a closely related work by Çatalyürek
and Aykanat [7]. In their approach, the structure of the unsymmetric matrix is rep-
resented by a hypergraph in which rows are vertices and columns are hyperedges. A
distinct advantage of their approach over ours is that their partitioning problem cor-
rectly models the communication volume in parallel matrix-vector multiplication; as
we discuss in section 4, our approach only models the communication volume approxi-
mately. Balanced against this weakness, our approach has several advantages relative
to theirs. Unlike the approach of Çatalyürek and Aykanat, our method treats rows
and columns equivalently and generates a well-defined partition of each. Also, as we
discuss in section 3, our approach allows us to model the application of both a matrix
and some kinds of preconditioners. We will return to the issue of the relationship
between these two approaches in our conclusions.

2. Applications. Matrix-vector products involving sparse, rectangular, or struc-
turally unsymmetric matrices occur in a wide variety of numerical methods. One very
important example is the solution of a unsymmetric system

Ax = b,

with an iterative method such as biconjugate gradient (BiCG) [14] or standard quasi-
minimal residual (QMR) [16]. During each iteration, these methods require the com-
putation of Ar and AT s for some vectors r and s. (It is worth noting that there are
solvers for unsymmetric systems that do not require the AT s product, e.g., transpose-
free QMR [15]). To use the partitioned matrix, PAQ, we can solve

(PAQ)y = Pb,

where QTx = y. Note that permuting the rows and columns of a matrix changes its
eigenvalues; however, because we do not know the exact role that eigenvalues play
in these methods, we cannot predict whether the effect will be positive or negative.
In this case, the number of rows and columns assigned to each partition must be
equal so that the diagonal blocks of PAQ are square and the data layout of the
vectors is correct for other parallel operations (like dot products). If A is structurally
symmetric or nearly so, a symmetric partitioning scheme is likely more appropriate.
(Furthermore, a symmetric reordering keeps the eigenvalues intact.)

Generally, iterative methods involve preconditioning. Suppose we have an explicit
preconditioner such as an approximate inverse M ≈ A−1. (See Benzi and Tůma [3]
for a survey of approximate inverse preconditioners.) In that case, we need to find P
and Q such that both PAQ and QTMPT ≈ (PAQ)−1 are well partitioned. By well
partitioned we mean that (1) the communication costs are low, (2) the block rows of
PAQ are balanced (i.e., have approximately equal numbers of nonzeros), and (3) the
block rows of QTMPT are balanced. Note that conditions (2) and (3) are stronger
than merely requiring that the block rows of P (A +MT )Q are balanced, and these
conditions are necessary because there is usually a synchronization point between the
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application of the matrix and the preconditioner. Once a particular P and Q are
determined, in the case of left preconditioning we need to solve

(QTMPT )(PAQ)y = (QTM)b,

where y = QTx. In essence, we need only reorder the variables according to QT

throughout the iterative method. If M is a right preconditioner, we solve

(PAQ)(QTMPT )y = Pb,

where y = PM−1x. In this case, we reorder the variables throughout the method
by P . Note that we may even use this idea when AM or MA is symmetric positive
definite and a method such as (preconditioned) conjugate gradients [19] is used.

Like iterative methods for linear systems, iterative methods for least squares
problems require numerous matrix-vector products, and in this case, the matrices
are rectangular. Consider a system of the form

min ‖Ax− b‖2,

where A is an m × n matrix with m > n. This problem can be solved by iterative
methods such as LSQR [38] that require computations of the form Ar and AT s every
iteration. Using the permuted matrix does not change the minimal value of the least
squares objective function.

Another situation in which A is rectangular arises in interior point methods for
linear programming,

min cTx
s.t. Ax = b,

x ≥ 0.

Here A is a real m×n matrix with m ≤ n. At each iteration of the method, the next
search direction is computed by solving the set of equations

[
D AT

A 0

] [
∆x
∆y

]
=

[
w
v

]
,(2.1)

where y is the dual variable and D is a diagonal matrix that changes each iteration.
Alternatively, we may solve the normal equations,

(AD−2AT )∆y = r.

See Wang and O’Leary [46] for an algorithm that solves these equations iteratively
as well as an overview of other such methods. When iterative solvers are employed,
frequent multiplications involving A and AT are needed. Even when using direct
methods, multiplies by A and AT are required to compute w and v or r at each
iteration. Permuting A does not change the eigenvalues of either of the two systems
mentioned previously.

Lastly, computing the truncated SVD of a large sparse matrix A via a Lanczos
procedure requires frequent multiplies by A and AT . This arises in, for example, latent
semantic indexing for information retrieval [4], clustering for hypertext matrices [5],
and geophysical applications [43]. Permuting A does not change its singular values,
and the singular vectors of the original matrix are just permutations of those for the
permuted matrix.



2052 BRUCE HENDRICKSON AND TAMARA G. KOLDA

3. Parallel matrix-vector multiplication. Since matrix-vector multiplica-
tions are ubiquitous numerical kernels, it is important to devise effective algorithms
for their parallel execution. To perform this operation efficiently, we must evenly
divide the computational load while requiring a minimum amount of communication.
In this section we show how matrix partitioning can be used to obtain this objective
for the matrix-vector and matrix-transpose-vector multiply operations.

Suppose that an m×n matrix A has already been reordered and partitioned into
a block p× p structure,

A =




A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App


 ,(3.1)

where p is the number of processors. Here Aij is of size mi × nj , where
∑

i mi = m
and

∑
j nj = n. We assume that most of the nonzeros are on the block diagonal as a

result of the partitioning.
We present algorithms for a row-based partitioning; that is, each processor is

assigned a block row, and we assume that the mi’s have been chosen in such a way
that the number of nonzeros per block row is nearly equal. For now we assume
nothing about the nj ’s. The algorithm we describe for computing Ax is widely used;
see, e.g., [42].

Analogous algorithms exist for a column-based partitioning. Specifically, if we
have a matrix that is partitioned into block columns, we can simply work with the
transpose of the matrix that is partitioned by rows.

3.1. Matrix-vector multiply (row-based). For the row-based algorithm, pro-
cessor i owns the ith block row of A, that is,[

Ai1 Ai2 · · · Aip

]
.

To compute the product y = Ax in parallel, divide the vector x into conformal block
format,

x =




x1

x2

...
xp


 ,

where block xi is of length ni. Processor i holds xi.
Consider the procedure from the point of view of processor i. First, a message

is sent to each processor j �= i for which Aji �= 0. This message contains only those
elements of xi corresponding to nonzero columns in Aji. While the processor waits
to receive messages, it computes the contribution from the diagonal matrix block,

y
(i)
i = Aiixi.

The block Aii, while still sparse, may be dense enough to exhibit good data locality.
Then, for each j �= i such that Aij is nonzero, a message is received containing a
sparse vector x̄j that has only the elements of xj corresponding to nonzero columns
in Aij , and

y
(j)
i = Aij x̄j
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is computed. (We assume that processor i already knows which elements to expect
from processor j.) Finally, the ith block of the product y is computed via the sum

yi =
∑
j

y
(j)
i .

Block yi is of size mi.

3.2. Matrix-transpose-vector multiply (row-based). In the row-based
method, to compute z = AT v, processor i holds vi, the ith block of v of size mi,
and the ith block row of A. As before, the procedure is sketched from processor i’s
point of view. First, the off-diagonal blocks are used to compute

z
(i)
j = AT

ijvi

for each j �= i for which Aij �= 0. Observe that the number of nonzeros in z
(i)
j is

equal to the number of nonzero rows in AT
ij , i.e., the number of nonzero columns in

Aij . Next, processor i sends to each other processor j �= i, the nonzero2 elements of

z
(i)
j , if any. While waiting to receive messages from the other processors, processor i
computes the diagonal block contribution

z
(i)
i = AT

iivi.

Next, from each processor j such that Aji �= 0, it receives z̄
(j)
i , which contains only

the nonzero elements of z
(j)
i . (Again, we assume that processor i already knows which

elements to expect from processor j.) Finally, processor i computes the ith component
of the product,

zi = z
(i)
i +

∑
j �=i

z̄
(j)
i .

Block zi is of size ni.

3.3. Analysis. We now present some facts for the row-based kernels; analogous
facts exist for the column-based kernels.

In both the matrix-vector and matrix-transpose-vector algorithm, a processor is
responsible for the multiplication associated with the matrix blocks it owns. This
leads to the following fact.

Fact 1. The number of multiplies that processor i performs in either the matrix-
vector or matrix-transpose-vector operations is equal to the number of nonzeros in
block row i.

Thus, the workload per processor is the same for both the matrix-vector and
matrix-transpose-vector multiplies. If the partitioning process ensures that the num-
bers of nonzeros per block row are nearly equal, the computational workload per
processor will be balanced.

Recall that a message goes from i to j in computing Ax if Aji is nonzero, and
only the elements of xi corresponding to nonzero columns in Aji are sent. This leads
to the following.

2Here we mean any elements that are not guaranteed to be zero by the structure of Aij . Elements
that are zero by cancellation are still communicated.
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Fact 2. The number of messages sent by processor i in the matrix-vector multiply
is equal to the number of nonzero blocks Aji with j �= i. Further, the volume of
messages sent by processor i is the sum of the number of nonzero columns in each Aji

with j �= i.

Similarly, a message goes from i to j in computing AT v if Aij is nonzero, and

only the nonzero elements of z
(i)
j are sent.

Fact 3. The number of messages sent by processor i in the matrix-transpose-
vector multiply is equal to the number of nonzero Aij with j �= i. Further, the volume
of messages sent by processor i is the sum of the number of nonzero columns in Aij

with j �= i.

Combining Facts 2 and 3 yields the following three facts.

Fact 4. The total number of messages sent in either the matrix-vector or matrix-
transpose-vector multiply is equal to the number of nonzero off-diagonal blocks.

Fact 5. If a message is sent from processor i to processor j in the matrix-vector
multiply, then a message of the same length will be sent from processor j to processor
i in the matrix-transpose-vector multiply.

This means that the matrix-vector and matrix-transpose-vector multiplies share
the same communication pattern with the direction of the messages reversed.

Fact 6. In either the matrix-vector or matrix-transpose-vector multiply, the total
message volume is equal to the sum of the number of nonzero columns in each off-
diagonal block.

As our numerical results in section 6 show, reducing the total number of nonzeros
in the off-diagonal blocks typically reduces the total message volume and the max-
imum message volume handled by a single processor, but the relationship between
these different quantities can be complex.

It is useful to observe that a single decomposition can lead to efficient matrix-
vector and matrix-transpose-vector products, and this helps facilitate parallelization
of the applications described in section 2.

We note that the amount of information about the structure of A required by each
processor is small. Specifically, to decide what to receive when performing y = Ax,
processor i needs only know which columns are nonzero within each nondiagonal
block of block row i (which it owns). Similarly, when sending data, processor i
must only know which columns within each nondiagonal block of block column i are
nonzero. Since processor i does not own block column i, this small amount of data is
communicated in a set-up phase before the numerical computation.

In the preceding discussion, we assumed that the mi’s are chosen so that the
nonzeros per block row (and hence the work per processor) are balanced. We made
no assumption about the nj ’s, and we can exploit this freedom in several ways.

(1) Choose the nj ’s to minimize communication in the matrix-vector products.
This is accomplished by leaving the nj ’s unconstrained.

(2) Choose the nj ’s to each be nearly equal, which would balance BLAS-1 op-
erations on the n-long vectors. These operations are a component of most iterative
methods.

(3) As discussed further in the next section, if we have an approximate inverse
preconditioner, say M ≈ A−1, we can simultaneously partition A and M . Our parti-
tioned matrices are given by PAQ and QTMPT . We can choose the mi’s to balance
the work associated with A and the nj ’s to likewise balance the effort of computing
with M .

As mentioned earlier, a matrix can be partitioned by rows or columns, whichever
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Fig. 4.1. Graph of a symmetric matrix.

leads to better performance. For example, consider a row partitioning of a matrix that
has dense rows but no dense columns. It may be difficult to balance the load since a
single processor is saddled with all the nonzeros in the dense row. Furthermore, the
processor owning the dense row will need to receive a large amount of information to
compute its contribution to Ax. Partitioning the matrix by columns resolves these
problems. Not only is the load balancing problem easier, but the communication
volume now depends on the nonzero rows in the off-diagonal blocks. A dense row will
contribute only one nonzero row to any block that contains it, so the communication
volume will generally be reduced.

4. A bipartite graph model. As discussed in section 3, the key to an efficient
parallel matrix-vector multiplication algorithm is in the partitioning of the rows and
columns of the matrix. For structurally symmetric matrices, this problem has been
well studied and is generally phrased in terms of graph partitioning. The structure of
an n× n structurally symmetric matrix A = [aij ] can be described by an undirected
graph G = (V, E) with V = {1, 2, . . . , n} and (i, j) ∈ E if and only if aij (and hence
aji) is nonzero (see Figure 4.1). Vertices and edges can have weights if desired. A
partitioning of the vertices of G corresponds to a symmetric partitioning of the rows
and columns of A. For example, a division of the vertices into two sets induces a
block 2 × 2 structure for the matrix. Each edge that crosses between the two sets
corresponds to a nonzero value in the off-diagonal blocks of the matrix. The standard
approach to structurally symmetric matrix partitioning is to try to minimize these
cross edges, while maintaining some balance on the number of rows (or the number of
nonzeros) in the two sets. This graph bisection problem is known to be NP-hard [17].

This approach is not well suited to rectangular or structurally unsymmetric matrix
partitioning. If the matrix is rectangular, then the graph model does not apply. If the
matrix is square, the standard graph model can only encode a symmetric structure. A
directed graph model can encode nonsymmetry in a square matrix, but more generally,
these approaches force the row partition to be identical to the column partition since
a vertex in the graph represents both a row and a column of the matrix. Although
this is reasonable for structurally symmetric matrices, it is unnecessarily restrictive
for structurally unsymmetric ones; that is, a better partition may be achieved by
allowing the rows and columns to be partitioned separately.

For the rectangular or structurally unsymmetric case, an alternate graph model
of the matrix can be used. The nonzero structure of an m × n matrix A = [aij ]
corresponds to an undirected bipartite graph G = (R, C, E) with R = {r1, . . . , rm},
C = {c1, . . . , cn}, and (ri, cj) ∈ E if and only if aij �= 0 (see Figure 4.2). Note that
no edge connects two rows or two columns. If desired, edges and vertices can have
weights assigned to them. A partitioning of the vertices in R induces a division of
the rows of the matrix; likewise, a partitioning of the C vertices corresponds to a
division of columns. Unlike the standard graph model, the bipartite model allows a
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Fig. 4.2. Bipartite graph of a matrix.

different number of row and column vertices and can represent unsymmetric structure.
Further, the row and column partitions are separate.

More formally, we propose the following bipartite graph partitioning problem.
Given a bipartite graph G = (R, C, E) with weighted edges and vertices, we wish
to find p disjoint partitions Pi ≡ Ri ∪ Ci with Ri ⊆ R and Ci ⊆ C such that the
following three criteria are satisfied.

(1) The total weight of edges crossing between partitions is minimized.
(2) There is a bound (possibly infinite) on the maximum difference in total row

vertex weight between any two partitions.
(3) There is a bound (possibly infinite) on the maximum difference in total col-

umn vertex weight between any two partitions.

This is a generalization of the standard graph partitioning problem.

The matrix partitioning problem from the matrix-vector multiply in section 3 can
be expressed in the bipartite graph partitioning model. Suppose we want to divide
the matrix over p processors. As discussed in section 3 this can be accomplished
by either a row-based or a column-based partition. Without loss of generality, we
will focus on the row-based option. Assign each vertex ri ∈ R a weight equal to
the number of nonzeros in row i of A. This weight corresponds to the number of
multiplication operations a processor will have to perform if it owns this row. Let
edges and column vertices have unit weights. Now apply bipartite graph partitioning
so that (1) the total number (or weight) of edges crossing between the partitions
(Pi = Ri ∪ Ci, i = 1, . . . , p) is minimized and (2) the total vertex weight in each set
Ri is approximately equal. The first constraint leads to low communication while
the second ensures load balance. Such a partitioning corresponds to a nearly block
diagonal structure for the matrix. Note that no constraints on column balance are
necessary; that is, the bound in condition (3) of the bipartite graph partitioning
problem is infinite.

Several caveats are necessary. First, with weights on the vertices, perfect load
balance may be difficult or impossible to achieve since the set of vertex weights may
not divide into equally sized sets. In practice it is much simpler to merely require that
the difference between the total vertex weights in Ri and Rj be less than or equal
to the maximum weight of any single row vertex. Second, with no restrictions on the
column vertices we can divide them in any way—perhaps even assigning no columns
to a given partition if that is what is best for the communication pattern. Third, the
edges are each given weight 1, but other edge weighting schemes are possible. For
example, we could weight an edge from ri to cj by |aij | if, for some reason, we want
to encourage large matrix values to be in the block diagonal. Lastly, as discussed
in section 3, the communication volume induced by a partition is not equal to the
number of graph edges cut but rather to the number of columns in the off-diagonal
blocks that have nonzeros in them. This column count is nicely captured in the
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hypergraph model of Çatalyürek and Aykanat [7], but it can also be expressed in the
bipartite graph model. Specifically, each of these nonzero columns corresponds to a
vertex with neighbors in another partition. However, this more accurate metric is
more difficult to model and minimize than the number of edges cut for two reasons.
First, the number of vertices with neighbors in another partition is a function that
changes in a discontinuous manner. Reducing the number of neighbors from 2 to 1
does not reduce the cost, but reducing it from 1 to 0 does. This is problematic for a
local search algorithm. Second, there is a large body of literature on graph partitioning
to minimize edge cuts that we could draw upon. For these reasons, we choose to focus
on edge cuts as an approximation to the true communication volume. We will discuss
the appropriateness of this approximation further in section 7. It is worth noting that
the same approximation is used (although not widely acknowledged) in the standard
graph partitioning model [22].

By not constraining the partition of the columns, we allow for whatever partition
leads to the minimal number of edge cuts. Other possible objectives are discussed
in section 3.3. One alternative is to balance the vector (i.e., BLAS-1) operations
associated with the n-long vectors. This can be accomplished by setting the weight of
each column vertex to 1 and adding the additional constraint (3) that the difference in
total vertex weight between any pair Ci and Cj be no more than 1 (i.e., the maximum
vertex weight in C).

The other objective mentioned in section 3.3 is to enable efficient matrix-vector
products for two matrices simultaneously, as in the case when an approximate inverse
preconditioner is employed in an iterative method to solve a linear system. Specifically,
for square A and M , we want to find P and Q such that PAQ and QTMPT (or
equivalently, PMTQ) are both well partitioned. We can address this by partitioning
an appropriately weighted bipartite graph. Before there was an edge from ri to cj , if
aij was nonzero and each edge was weighted as 1. Now, (ri, cj) ∈ E if either aij or
mji is nonzero. Further, the weight of the edge from ri to cj is

w(ri, cj) =

{
2 if aij �= 0 and mji �= 0,
1 if aij �= 0 or mji �= 0.

The weight of vertex cj is equal to the number of nonzeros in column j of MT (or
row j of M). We add the condition (3) that the difference in total vertex weight
between any pair Ci and Cj be no more than the maximum vertex weight in C. The
solution of the resulting bipartite graph partitioning problem produces a balanced
row decomposition of A and a balanced column decomposition of MT . The weighted
cut edges reflect the total communication volume required by the two matrix-vector
products. Note that partitioning the two matrices independently would require that
the vector being multiplied would need to be reordered in between the multiplications,
resulting in additional communication.

5. Algorithms for bipartite graph partitioning. Now that the rectangular
and structurally unsymmetric matrix partitioning problems have been modeled using
a bipartite graph, we need algorithms for partitioning such graphs. In this section
we propose several algorithms that are adapted from techniques for the standard
graph model and one that is specific to bipartite graphs. Each method partitions the
bipartite graph into two sets (P1 = R1 ∪ C1 and P2 = R2 ∪ C2). Any power-of-two
number of sets can be generated by dividing the two sets recursively. And further, any
number of sets can be produced this way by a simple generalization of the partitioning
problem to generate sets of a specified size ratio.



2058 BRUCE HENDRICKSON AND TAMARA G. KOLDA

5.1. Alternating partitioning. The alternating partitioning method, intro-
duced by Kolda [33], is specific to bipartite graphs. Given a column partition, the
algorithm produces the best possible row partition. It then takes this new row parti-
tion and generates the best possible column partition. The algorithm alternates back
and forth between rows and columns until no further improvement is observed. The
initial partition can be random, or it can be the output of some other algorithm.

Given a partitioning of the column vertices, the optimal row vertex partition can
be computed in the following manner. Let s1

i denote the total edge weight between row
vertex i and adjacent column vertices in partition 1; similarly, let s2

i denote the total
edge weight between row vertex i and adjacent column vertices in partition 2. Then
si ≡ s1

i − s2
i is the gain associated with assigning node i to partition 1. (Conversely,

−si = s2
i − s1

i is the gain associated with assigning node i to partition 2.) Our goal
is to assign the vertices to sets in such a way that the total gain of vertices assigned
to partition 1 is maximized. In the unconstrained or constrained with unit weights
cases, this can be done optimally as shown in the following two theorems.

Theorem 5.1. Suppose that the column partition (C1, C2) is fixed and that there
is no constraint on the row partition. Let the si’s (as described above) be sorted so
that

si1 ≥ si2 ≥ · · · ≥ sim .

Select j∗ so that for all j ≤ j∗, sij is positive, and for all j > j∗, sij is nonpositive.
Then an optimal assignment of the row vertices is R1 = {ri1 , . . . , rij∗ } and R2 =
{rij∗+1

, . . . , rm}.
This result follows from the observation that each row is placed in its optimal

partition. Note that the optimal solution is unique unless one or more sij values is
zero.

When the total row vertex weight in each partition is constrained, we can gener-
alize the algorithm in a natural way. Choose a dividing point ĵ as close as possible
to j∗ that satisfies the bounds on the total vertex weight. If the row vertices are
unit weighted (or equally weighted), then this approach is optimal, as shown by the
following theorem.

Theorem 5.2. Suppose that the column partition is fixed. Let the si’s be sorted
so that

si1 ≥ si2 ≥ · · · ≥ sim .

Select j∗ so that for all j ≤ j∗, sij is positive, and for all j > j∗, sij is nonpositive. Let

ĵ be the closest index to j∗ that satisfies the balance constraint. If the row vertices have
equal weights, then an optimal assignment of the row vertices is R1 = {ri1 , . . . , riĵ}
and R2 = {riĵ+1

, . . . , rim}.
Proof. By Theorem 5.1, j∗ is an optimal assignment if there are no balance

constraints. The choice of ĵ ensures that a minimal number of vertices are placed in
a set for which their gain is negative. Further, the vertices with the smallest negative
gains are chosen.

The general weighted and constrained case is more complicated. Some of the
vertices may need to be moved out of their preferred set. The question is how to
move the minimum amount of gain value while aggregating sufficient weight. This is
equivalent to the knapsack problem which is known to be NP-hard [18].

Let |E| denote the number of edges in G or correspondingly the number of nonzeros
in A, and let |R| and |C| denote the number of row and column vertices. An iteration
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consists of finding a row partition given a fixed column partition and then finding a
column partition given a fixed row partition. It is not hard to show that the complexity
of each iteration is O(|E| + |R| + |C|). The computational steps in an iteration are
the generation of gain values for each vertex and the determination of j∗ (or ĵ) via a
weighted median procedure. Computing the gains for all vertices requires an addition
or subtraction for each edge, at a cost of O(|E|). Finding the weighted median of a
set of k values requires O(k) operations (see, for instance, problem 10.2 in [9]), and it
is used on a set of |R| gains and then a set of |C| gains. Our implementation actually
uses a simpler, binary search algorithm for median finding. Although it works well in
practice, it is not guaranteed to run in linear time.

The number of iterations is variable but guaranteed finite [33]. Alternatively, a
maximum allowable number of iterations can be specified.

This method was derived from the semidiscrete decomposition that was intro-
duced by O’Leary and Peleg [37] for image compression and that was also used for
latent semantic indexing in information retrieval by Kolda and O’Leary [32, 35, 34].

5.2. Kernighan–Lin/Fiduccia–Mattheyses. The Kernighan–Lin [31] algo-
rithm is a widely used method for improving a graph partition. As with alternating
partitioning, the initial partition can be random, or it can be the output of another al-
gorithm. A reformulation by Fiduccia and Mattheyses [12] improved the performance
of the basic approach.

The Fiduccia–Mattheyses (FM) algorithm consists of a sequence of passes over
the graph in which vertices are moved from one partition to the other. Move selection
is based on the gain concept described in section 5.1, but gains are computed relative
to the partition the vertex is currently in. The vertex with the largest gain value is the
one whose move will maximally reduce the number of edges cut. Moves that worsen
the quality of the partition are allowed, which enables the algorithm to escape local
minima. Moves are permitted only if they do not violate the balance constraints or
if the set the vertex is leaving is larger than its goal weight. Within a pass, vertices
are allowed to move only once to avoid infinite looping. The basic structure of a pass
is as follows.

(1) Mark all vertices as eligible.
(2) For each vertex, compute the gain associated with moving it from its current

partition to the other; the gain may be negative.
(3) Among moves that improve the balance criteria or that at least do not violate

the balance constraints, select the eligible node with the greatest gain. If there
are no further eligible nodes, exit.

(4) Move the selected node to the other partition, mark it as ineligible, and update
the gains of all of its neighbors.

(5) If this is the best partition yet seen that obeys all constraints, save it.
(6) Go to step 3.

Fiduccia and Mattheyses observed that careful use of data structures allows a
single pass to be performed in linear time. A priority queue can be used to keep track
of the gain values for each type of move (i.e., from set 1 to set 2 or from set 2 to set 1).
A bucket sort can be used to organize the initial gains and to efficiently update the
gain values. In this way, a pass through the outer loop can be implemented to run in
time O(|E|+ |R|+ |C|). See Fiduccia and Mattheyses [12] for a detailed discussion of
data structures.

We have adapted this basic algorithm to address the bipartite graph partitioning
problem. The key change is that there are now four types of moves: rows or columns
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can move from either the first or second set. We maintain a priority queue for each
of these move types. To select a vertex to move, we examine the first item in each
of the four queues and choose the move with the highest gain that obeys the balance
considerations in step 3. In this way, we ensure that the runtime is linear in the size
of the graph.

In practice the performance can be improved by stopping the outer loop when a
new best partition has not been encountered in a while—say within the past 50 moves,
for instance. Another optimization (not in our current implementation) is to evaluate
the gain values lazily. In the standard FM algorithm, the gain for every vertex is
calculated before each pass. The gains are updated as the sequence of moves changes
them. In the lazy implementation, only the gain values of vertices with neighbors in
the other partition are computed before each pass. If a vertex moves to the boundary
(i.e., one of its neighbors moves to the other set), then its gain is calculated and kept
updated from then on. If we have a reasonably good starting partition, then the
number of vertices on the partition boundary should be small, and most gains will
never need to be calculated. For multilevel algorithms (like the approach described
in section 5.4), FM is used to improve partitions that are already fairly good. In this
setting, lazy evaluation can significantly reduce execution times [26].

5.3. Spectral. A popular algorithm for standard graph partitioning is spec-
tral bisection, which uses an eigenvector of the Laplacian matrix associated with the
graph [25, 39, 41]. We can apply spectral partitioning to a rectangular or structurally
unsymmetric problem by first symmetrizing it. Given a bipartite graph G = (R, C, E)
of a matrix A, form the corresponding structure matrix Ā = [āij ] (āij is nonzero
if (ri, cj) ∈ E and its value is equal to the weight of the edge), and then form the
symmetric (m+ n)× (m+ n) matrix

Ã =

[
0 Ā
ĀT 0

]
.

The symmetric Ã has a well-defined Laplacian matrix that can be used for parti-
tioning. The symmetric partitioning of Ã can then be used to generate both row
and column partitions of A. This approach was used by Berry, Hendrickson, and
Raghavan [5].

In order to apply spectral partitioning, the Laplacian of Ã,

L = D − Ã

is computed, where D = diag{d1, d2, . . . , dm+n} and di =
∑

j ãij . The matrix L is
symmetric and positive semidefinite. Furthermore, we have the following theorem.

Theorem 5.3 (Fiedler [13]). If the graph of Ã is connected, then the multiplicity
of the zero eigenvalue is one.

Let w denote a Fiedler vector of L, that is, an eigenvector corresponding to the
smallest positive eigenvalue of L. Let u denote the first m and v the last n elements
of w. Note that u corresponds to rows of A and v to columns. Now sort the elements
of u and v so that

ui1 ≥ ui2 ≥ · · · ≥ uim

and

vj1 ≥ vj2 ≥ · · · ≥ vjn .
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This ordering of the elements of u can be used to partition the rows of A. Simply split
this sorted list into high-valued and low-valued entries to satisfy the balance criteria.
The same algorithm applied to v partitions the columns of A.

For the standard graph partitioning problem, spectral bisection generally pro-
duces good partitions, but the eigenvector calculation is expensive.

5.4. Multilevel. The most popular methods for standard graph partitioning use
a multilevel approach [6, 26, 29, 30]. A multilevel method starts with a graph that
has a large number of vertices, successively merges vertices until it has a coarse graph
with a small number of vertices (phase 1), partitions the coarse graph (phase 2), and
successively uncoarsens the graph, periodically refining the partition step (phase 3).
We have adapted this general framework to the bipartite graph partitioning problem.

5.4.1. Phase 1: Graph coarsening. Let G = (R, C, E) be the current graph.
We want to form a smaller graph Ĝ = (R̂, Ĉ, Ê) by merging pairs of vertices of G. Row
vertices merge only with row vertices, likewise for column vertices. The following
procedure determines which row vertices to pair and eventually merge.

(1) Mark all row vertices as eligible.
(2) Choose an arbitrary eligible row vertex, say ri. If no more row vertices are

eligible, the pairing is complete.
(3) Find an eligible row vertex rj with the property that some column vertex is

adjacent to both ri and rj . If no such row vertex exists, mark ri as ineligible
and return to step 2.

(4) Slate vertices ri and rj to be merged, and mark both as ineligible. Return to
step 2.

An analogous procedure is used to determine the column pairing.
Given a set of vertices V and edges E , a matching is a subset of edges Ẽ ⊂ E such

that no vertex is adjacent to more than one edge in Ẽ . A matching Ẽ is maximal if
no more edges can be added to Ẽ without destroying the matching property. (Note
that this is a weaker condition than maximum matching which refers to the largest
possible set of matching edges in the graph.)

Theorem 5.4. If A is the matrix associated with G, then the row pairing algo-
rithm identifies a maximal matching among edges of the (symmetric) graph of AAT .
(Similarly, the column pairing constructs a maximal matching among edges of the
graph of ATA.)

Proof. Recall that aij is nonzero if and only if (ri, cj) ∈ E . Element (i, j) of AAT

is nonzero if and only if vertices ri and rj have a column neighbor in common. Thus,
the above process serves as a greedy algorithm for growing a matching in the graph
of AAT . A greedy algorithm generates a maximal matching since, by construction,
any unmatched row has no other rows it can pair with.

Theorem 5.5. Let H be the matrix with unit values that has a nonzero structure
corresponding to G. The cost of the row-pairing algorithm is O(|HT e|22 + |R|), where
e is the vector of all ones. (Similarly, the cost of the column-pairing algorithm is
O(|He|22 + |C|).)

Proof. All the work in the algorithm costs O(|R|) except for the search for the
paired row rj in step 3. This step can involve examining all paths of length 2 in the
bipartite graph. As argued in the proof of Theorem 5.4, each such path will contribute
a unit value into HHT . The number of such paths will thus be the total value of all
the entries in HHT ; that is, eTHHT e = |HT e|22.

Once all the pairings have been determined, the pairs are merged together. Sup-
pose r̂k is the result of merging ri and rj , then the weight of r̂k is the sum of the
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weights of ri and rj . There is an edge between r̂k and ĉl if any of their constituent
vertices were adjacent in G and the weight of the edge is the sum of all the weights
of the edges between their constituent vertices. This is analogous to adding the cor-
responding row and column pairs in A.

The coarse graph maintains the bipartite structure of the original graph and has
about half as many vertices. To further coarsen, the process is repeated until the
graph has only a small number of vertices, say 100. If at any point too few rows and
columns are paired, the coarsening procedure terminates.

5.4.2. Phase 2: Partitioning the coarse graph. Once a small enough bipar-
tite graph has been generated, it is partitioned. Any method can be used; and if the
graph is small, the quality of the final answer does not seem sensitive to this choice.
In our implementation, we have chosen to use a random partition.

5.4.3. Phase 3: Uncoarsening and refinement. In phase 3, the mergings
from phase 1 are successively “undone.” If coarse vertex r̂k is in partition 1, then its
two constituent vertices, ri and rj , are in partition 1. Before the next “undo” step,
a refinement can be performed. In the course of the refinement, for example, ri may
move from partition 1 to partition 2. The “undo” steps continue until the original
graph is obtained.

For refinement, we have experimented with three different options: alternating
partitioning from section 5.1, FM from section 5.2, and a combination of alternating
partitioning followed by FM.

6. Experimental results. The software is a modification of the Chaco package
(written in C) developed by Hendrickson and Leland [24] for partitioning structurally
symmetric matrices. All calculations were performed on a 300 MHz Pentium II with
128 MB memory unless otherwise noted.

Table 6.1 lists the methods that are tested. The partitioning is done recursively;
that is, first the vertices (rows and columns) are partitioned into two sets, then each
of those sets are partitioned into two sets, and so on until we reach the desired number
of partitions. If we perform, for example, a row-based partition, each time we split a
set into two partitions we require that the difference in the total row vertex weight
in each partition be less than or equal to the maximum weight of any single vertex in
the set.

The natural partitioning is a simple partition based upon the ordering the matrix
had when it was given to us; often those orderings are meaningful. In the row-based
case with no constraints on the columns, for example, the ordering of the rows and
columns are fixed, but we still need to construct a row partition that obeys the
balance constraints and a column partition that minimizes communication. We do
this in two steps. First we find the split in the ordering of rows that divides the work
into equally sized pieces. Next, with the row partitioning in hand, we find the split
in the column ordering that minimizes the communication. This approach is applied
recursively; that is, first the nodes are partitioned into two sets, then each of those
sets are partitioned, and so on.

The FM and alternating partitioning (AP) methods require some initial parti-
tion. Some experimentation convinced us that the methods work best when FM is
initialized with a natural partition and AP with a random partition, so all further
runs were performed in this way. The spectral method uses the multilevel Rayleigh
quotient iteration/Symmlq eigensolver [1] from the Chaco partitioning software [24].
The multilevel (ML) algorithms divide the coarsest graph randomly and use various
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Table 6.1
Partitioning methods.

Abbreviation Method
Natural Natural ordering
FM Fiduccia–Mattheyses
AP Alternating partitioning
Spectral Spectral method
ML–FM Multilevel Fiduccia–Mattheyses
ML–AP Multilevel alternating partitioning
ML–AP+FM Multilevel alternating partitioning plus Fiduccia–Mattheyses

Table 6.2
Test matrices.

Matrix Application Rows Columns NNZ Density Dense?
pig-large Least squares 28254 17264 75018 1.5e-4 —
pig-very Least squares 174193 105882 463303 3.7e-4 —
dfl001 Linear program 6071 12230 35632 4.8e-4 1 row
Amatrix Linear program 123221 141344 1437692 8.3e-5 72 rows
we1998 Truncated SVD 719736 96300 27546437 4.0e-4 1672 cols
memplus Preconditioned 17758 17758 99147 3.1e-4 —
precond linear system 76372 2.4e-4 —

refinement strategies: FM, AP, and AP followed by FM (AP+FM). We handle discon-
nected graphs specially in all cases except the natural partitioning and FM (because
we use the natural ordering to generate the initial partition in this case) by identifying
all the connected components, assigning components to partitions in a greedy fash-
ion, and only partitioning what remains. In each case, we repeatedly coarsen until
the number of coarse row and column vertices is less than 100. Refinements were
performed at every other iteration of the uncoarsening phase.

The test matrices were gathered from the various applications discussed in sec-
tion 1 (see Table 6.2). The two items in the last row of the table refer to a matrix
and its preconditioner, as is discussed in section 6.4. Dense rows and columns are
noted because that will affect whether the partitioning is row- or column-based. We
consider a row or column to be dense if more than 1/32 of its values are nonzero.

For each test matrix, we show two tables. The first table details the communica-
tion pattern. The Edge cuts column lists the number of nonzeros outside the block
diagonal, that is, the edges in the bipartite graph that are cut by the given vertex
partition. The Part time column lists the time (in seconds) to compute the partition.
The Total msgs and Total vol columns list, respectively, the total number of messages
and total message volume for computing either Ax or AT v. (Recall from Facts 4 and 6
that those values are equal for Ax and AT v.) The Max msg and Max vol columns list,
respectively, the maximum number and maximum volume of messages handled by a
single processor in the computation of Ax or AT v, incoming or outgoing.

The second table for each matrix lists the block partition information. We have
partitioned these matrices to balance the number of multiplies per processor, that is,
the number of nonzero matrix elements per processor. Each processor holds one block
row or one block column. Columns 2–5 list the details for the Block rows. The Min
rows and Max rows list, respectively, the minimum and maximum number of rows in
any block row. The Min NZ and Max NZ columns list, respectively, the minimum and
maximum number of nonzeros in any block row. Although the numbers of rows owned
by processors may vary significantly, variation in the number of nonzeros should be
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Table 6.3
Communication pattern for row-based partitioning of the pig-large matrix on eight processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 49048 0.21 32 21172 7 5534
FM 15659 1.40 56 11309 7 2618
AP 20251 2.16 56 11714 7 1985
ML-FM 8013 3.14 55 2454 7 607
ML-AP 10299 2.74 56 4830 7 1138
ML-AP+FM 7671 5.25 56 2292 7 443
Spectral 5693 167.93 53 2721 7 829

Table 6.4
Block information for the row-based partitioning of the pig-large matrix on eight processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 3124 6375 9372 9381 0 6203 0 39439
FM 3342 3786 9376 9379 1318 2955 6851 11483
AP 3310 3740 9376 9379 2154 2162 7748 10917
ML-FM 3397 3652 9376 9379 2003 2280 8223 10150
ML-AP 3206 3954 9376 9379 2155 2161 8756 10329
ML-AP+FM 3441 3621 9376 9378 2006 2303 8701 10198
Spectral 3138 3694 9373 9381 2018 2374 8600 10412

small when the partition is row-based since this balances the computational work.
The next four columns list analogous values for the Block columns.

We choose the number of processors, p, in each case so that the number of nonzeros
per processor is 10,000, give or take a factor of 2, except for the Amatrix which has
30,000 nonzeros per processor.

6.1. Least squares. The pig-large and pig-very matrices are from least
squares problems relating to pig breeding data [21, 28] and were obtained from
Duff [10].

The pig-large matrix is of size 28,254 × 17,264 with 75,018 nonzeros. The
results of row-based partitioning the pig-large matrix over eight processors are given
in Tables 6.3 and 6.4. The natural partitioning takes a small amount of time to
compute (0.21 seconds) because the matrix still must be divided in such a way that
each block row has approximately the same number of nonzeros. Notice that the
natural partitioning requires the fewest messages (32) but the highest total volume
(21,172). Also note that the minimum number of columns in a block is zero, which
means that the processors with zero columns have no parts of the vector x in the Ax
computation. Those processors will not have any messages to send nor any diagonal
component (Aiixi) to compute and will be idle until they receive messages from the
other processors.

In contrast, the various partitioning methods increase the total message count to
at or near the maximum of 56 but drastically reduce the total message volume (by a
factor of more than 9 in the best case) and the maximum volume handled by a single
processor (by a factor of more than 12 in the best case). Further, the partitionings
yield more balanced column partitions even though no constraint was used. Of course,
the number of nonzeros handled by each processor is about equal as required. In fact,
the number of nonzeros handled by a single processor varies by far less than 1% as we
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Table 6.5
Communication pattern for row-based partitioning of the pig-very matrix on 32 processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 292055 2.45 290 109180 30 16772
FM 99252 26.53 837 75270 31 4808
AP 142967 23.99 931 88610 31 5227
ML-FM 38552 40.41 851 12973 31 1332
ML-AP 54261 37.84 926 24737 31 1929
ML-AP+FM 38096 60.87 831 13019 31 1240

Table 6.6
Block information for the row-based partitioning of the pig-very matrix on 32 processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 4825 14481 14475 14481 0 16720 0 129623
FM 4976 6004 14476 14480 1213 4814 9844 21187
AP 4857 6621 14477 14480 2673 3841 9942 20778
ML-FM 5234 5802 14475 14483 2964 3544 13851 16231
ML-AP 4892 6637 14477 14480 3210 3509 12821 16529
ML-AP+FM 5263 5646 14476 14480 2960 3529 13191 16150

can see by looking at the minimum and maximum number of nonzeros in each block
row.

The ML-AP+FM method yielded the best partitioning and required about 5
seconds of processing time, on par with the other methods. In general, the ML
methods yielded the best total volume and maximum single processor volume. The
FM method was the fastest partitioning method but did not reduce the message
volume as much as the other methods. The spectral method was slower than all
others by a factor of more than 30 but did not produce the best partition.

Recall that our methods attempt to find partitionings that minimize the number
of edge cuts. This does not correspond exactly to total message volume but is merely
an approximation. On this problem, notice that the reduction in edge cuts correspond
roughly to the reduction in total message volume. For example, the ML-AP+FM
method has the fewest edge cuts as well as the least communication volume.

The pig-very matrix is of size 174,193 × 105,882 with 463,303 nonzeros. Ta-
bles 6.5 and 6.6 show the results of partitioning this matrix row-wise over 32 proces-
sors. In this case we do not show results for the spectral method because it was too
time consuming.

The results are very similar to the results obtained for the pig-large matrix.
There is a correspondence (albeit an imperfect one) between edge cuts and total
message volume. The ML methods yield the best partitions, in the best case reducing
the total message volume by a factor of 8. The maximum message volume handled
by a single processor is decreased by a factor of more than 13 in the best case at the
cost of about three times more messages.

The natural partitioning seems promising in terms of message count, but the
maximum message volume handled by a single processor is more than that handled
by all 32 processors for the ML partitionings.

6.2. Linear programming. The 6,071 × 12,230 dfl001 matrix is a linear pro-
gramming constraint matrix with 35,632 nonzeros. This matrix was obtained from
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Table 6.7
Communication pattern for column-based partitioning of the dfl001 matrix on eight processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 30989 0.08 44 19804 7 8751
FM 8132 1.80 56 7493 7 1247
AP 12171 0.86 56 11552 7 1967
ML-FM 6553 2.02 56 5875 7 1022
ML-AP 7860 1.49 56 7040 7 1145
ML-AP+FM 6651 2.68 56 5959 7 994
Spectral 14734 40.61 55 10633 7 2993

Table 6.8
Block information for the column-based partitioning of the dfl001 matrix on eight processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 0 3088 0 18545 1375 1602 4449 4457
FM 588 823 4173 4611 1289 1707 4448 4462
AP 659 858 3743 5512 1017 1977 4449 4464
ML-FM 696 856 4042 4749 1297 1822 4448 4460
ML-AP 755 763 4001 4883 1324 1749 4453 4455
ML-AP+FM 717 812 4194 4729 1323 1763 4444 4460
Spectral 426 1215 1859 7299 932 1937 4448 4458

Netlib.3 The matrix contains one dense row and so was partitioned column-wise.
Tables 6.7 and 6.8 show the results of partitioning the dfl001 matrix over eight

processors. The original matrix does not have much structure, and the only reason
the total number of messages for the natural partition is only 44 (versus 56) is that
some partitions contain no rows. In the best case we can reduce the total message
volume by a factor of more than 3 and the maximum message volume on a single
processor by a factor of more than 8. The block columns are very balanced in terms
of the number of nonzeros per block. The block rows are reasonably balanced for the
FM and ML methods although this was not enforced by any constraint. Again we
can observe that edge cuts correspond to total message volume.

The 123,221 × 141,344 Amatrix was obtained from Rothberg [40]. This matrix
has 1,437,692 nonzeros and contains 72 dense rows. Tables 6.9 and 6.10 contain the
results of a column-based partitioning of this matrix over 128 processors. This is an
interesting partitioning problem because even though all of the partitionings reduce
the edge cuts by at least 25%, the total message volume is not reduced much and in
some cases (AP, ML-AP, ML-AP+FM) even increases. Thus, for this problem, the
assumption that edge cuts correlate with communication volume is invalid. Despite
this, the partitioning is still beneficial because it reduces the total message volume
handled by a single processor by a factor of 5 in the best case and even decreases
the maximum number of messages that any processor handles. Further, the FM
and AP methods do better than the ML methods in that they have a smaller total
number of messages, approximately the same total message volume, a smaller number
of maximum messages per processor, and approximately the same maximum volume
per processor. Further, computing the partitionings for the FM and AP methods is
faster than for the ML methods.

3http://www.netlib.org/lp/
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Table 6.9
Communication pattern for column-based partitioning of the Amatrix matrix on 128 processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 1414303 4.60 766 358721 126 94346
FM 967664 54.42 4461 325724 94 18718
AP 1006357 40.58 5427 372168 83 19780
ML-FM 993194 74.18 7770 330508 119 21551
ML-AP 975488 78.20 6088 376243 107 19575
ML-AP+FM 965200 115.16 5877 397407 119 18179

Table 6.10
Block information for the column-based partitioning of the Amatrix matrix on 128 processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 0 68010 0 826156 361 3896 11196 11265
FM 1 7377 248 157166 381 4111 11202 11262
AP 126 1997 999 158408 383 4548 11179 11274
ML-FM 35 1927 940 174351 382 2409 11199 11258
ML-AP 98 2161 1062 92798 373 3898 11195 11278
ML-AP+FM 40 4011 1032 112416 376 4010 11195 11256

6.3. Truncated SVD. The 719,736 × 96,300 we1998 matrix with 27,546,437
nonzeros is used in a geophysical application where a truncated SVD must be com-
puted (see Vasco, Johnson, and Marques [43]); the matrix was provided by Vasco and
Marques [44]. This matrix has 1672 dense columns and so was partitioned row-wise.
Because of the size of the matrix, the problem was run on an SGI Onyx with two
processors and six gigabytes of memory, so the timings cannot be compared with the
timings of the other problems.

In Tables 6.11 and 6.12, we show the result of partitioning we1998 over 1024
processors. The situation is almost the opposite of that for Amatrix. The number of
edge cuts is only modestly reduced, but the total message volume is halved by every
partitioning method. The total number of messages goes up by a factor of about 125,
depending on the method, but the maximum number of messages handled by a single
processor is actually reduced by about 20%, and the maximum volume handled by a
single processor is reduced by a factor of about 400.

The block rows are very evenly divided with each containing about 27,000 nonze-
ros. The block columns, on the other hand, are not so even, with some blocks being
assigned no columns. However, in the natural partitioning one partition has 40% of
the columns and 7% of the nonzeros. Since the partition is row-wise, this has no im-
pact on load balance but leads to the very large value for maximum communication
volume in Table 6.11. With the other decompositions, no partition has more than
0.7% of the columns and 0.6% of the nonzeros.

6.4. Preconditioned linear systems. Here we give results for working with a
preconditioned linear system. As mentioned earlier, the goal is to partition a matrix
A and its approximate inverse preconditioner M so that both PAQ and QTMPT are
well partitioned; that is, the work per processor is balanced, and the communication
costs are low.
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Table 6.11
Communication pattern for row-based partitioning of the we1998 matrix on 1024 processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 25030959 95.61 3065 6481846 1023 5067422
FM 21952461 651.83 401074 3108517 826 12271
AP 22089460 1541.85 375587 3061108 769 10796
ML-FM 21831402 1428.13 354089 2989724 787 15224
ML-AP 21895852 2011.43 352771 2930819 813 13142
ML-AP+FM 21823900 2512.78 351472 2930031 763 11010

Table 6.12
Block information for the row-based partitioning of the we1998 matrix on 1024 processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 277 1377 26700 27126 0 38141 0 20495167
FM 155 2013 26745 27037 4 643 2327 136809
AP 153 2978 26666 27126 0 475 0 175255
ML-FM 154 2162 26782 27014 1 593 88 141041
ML-AP 155 3275 26648 27150 0 577 0 144909
ML-AP+FM 154 3195 26787 27014 1 544 48 132539

The memplus matrix is available from MatrixMarket.4 (It contained 27,003 ex-
plicitly stored zeros, which were removed.) The matrix is of size 17,758 with 99,147
nonzeros. We used research code provided by Benzi and Tůma [2] to generate an
approximate inverse preconditioner via the method of Grote and Huckle [20]. The
resulting preconditioner had 76,372 nonzeros. The two matrices were combined into
a bipartite graph with weighted edges and vertices as described in section 4. The
memplus matrix will be partitioned row-wise and the transpose of the preconditioner
will be partitioned column-wise.

The results of the various partitioning strategies for memplus and its precondi-
tioner are given in Tables 6.13 and 6.14. There are two rows for each partitioning
strategy: the first corresponds to memplus and the second to the transpose of the pre-
conditioner. Using ML-FM, the total message volume is reduced by nearly a factor
of 6 for the matrix and by over 16 for the preconditioner, although the number of
messages does increase in each case. Further, the maximum message volume on a
single processor is reduced by a factor of nearly 5 and more than 8, respectively. The
FM, ML-AP, and ML-AP+FM methods behaved similarly. The AP method was not
quite as good as the previously mentioned four methods. The spectral method was
nearly as bad as no partitioning at all.

The number of nonzeros per block row is required to be nearly equal for memplus
and likewise for the block columns of the transposed preconditioner.

We have also added a row for the symmetric ML-FM scheme in Chaco [24]. The
scheme partitions the graph G = (V, E) defined by V = {1, 2, . . . , n}, where n is the
order of the matrix, and (i, j) ∈ E if either aij , aji, mij , or mji is nonzero with an
edge weight equal to the number of those entries that are nonzero. The weight of
vertex i is equal to the number of nonzeros in row i of A plus the number of nonzeros
in column i of M . The resulting symmetric matrix was converted into a weighted

4http://math.nist.gov/MatrixMarket/
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Table 6.13
Communication pattern for memplus and its (transposed) preconditioner on eight processors.

Method Edge Part Total Total Max Max
cuts time msgs vol msgs vol

Natural 84044 0.21 38 37468 7 6655
68495 51 42545 7 7545

FM 26276 1.99 55 9793 7 1822
7334 48 4232 7 1350

AP 38462 2.53 46 19695 7 5336
10933 39 7668 7 3187

ML-FM 16076 4.34 56 6333 7 1339
4996 55 2595 7 886

ML-AP 16416 5.11 56 7155 7 1659
4145 51 2243 7 1147

ML-AP+FM 16609 6.85 56 7200 7 1903
3024 51 2077 7 1177

Spectral 55722 78.60 52 30113 7 5218
43823 48 32065 7 6672

Sym ML-FM 16515 1.71 56 6056 7 2877
853 37 583 7 161

Table 6.14
Block information for memplus and its (transposed) preconditioner on eight processors.

Block row Block column
Method Min Max Min Max Min Max Min Max

rows rows NZ NZ cols cols NZ NZ
Natural 204 3664 12279 12503 2009 2429 7242 36717

1919 16158 9541 9551
FM 1694 2881 12144 12555 2097 2570 10355 13921

8129 10467 9544 9549
AP 279 2944 12347 12587 2021 2408 10394 17749

5637 10993 9541 9551
ML-FM 1961 2451 12196 12627 2135 2387 11464 14458

8387 10664 9543 9549
ML-AP 1767 2563 12205 12658 2147 2484 11327 14373

7844 10197 9543 9549
ML-AP+FM 1629 2600 12173 12621 2149 2444 10997 15092

8121 10286 9543 9548
Spectral 264 3928 12269 12519 1909 3180 8474 21221

3236 14676 9541 9551
Sym ML-FM 1749 2416 11410 14002 1749 2416 11439 13988

8109 10342 7891 10455

graph and partitioned by the ML partitioning routine in Chaco.

Because this process couples the structure of A andM , the partitioner is unable to
balance them independently. Consequently, neither A nor M are well load balanced,
as evidenced by the min and max nonzero values for rows of A and columns of M .
Although the total work for performing both products is well balanced, this may be
insufficient because a synchronization may be necessary in between the two products.

However, by weakening the load balance constraint in this manner, a much better
partition is now found, leading to a significant reduction in communication cost. It
is also worth noting that the run time of Chaco is decidedly less than that for the
bipartite partitioning algorithms. There are two reasons for this: First, the bipartite
graph has twice as many vertices, so the partitioning problem is larger. Second, some
of the performance enhancing features in Chaco (principally lazy evaluation) are not
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currently in the bipartite partitioning code.

7. Conclusions. There are numerous algorithms requiring repeated parallel
matrix-vector and matrix-transpose-vector multiplies with rectangular or structurally
unsymmetric sparse matrices. We outlined parallel matrix-vector multiply routines
and demonstrated that their performance depends on the partitioning of the ma-
trix. We showed that partitioning a rectangular or structurally unsymmetric matrix
corresponds to partitioning a bipartite graph. We also showed that the bipartite par-
titioning model can allow for simultaneous partitioning of a matrix and its explicit
preconditioner. We then presented several methods for the bipartite graph partition-
ing problem: AP, Kernighan–Lin/FM, spectral, and multilevel.

We gave results for partitioning several large matrices arising from various ap-
plications. Overall, we found that the multilevel methods usually work best. The
best refinements seem to be either FM or AP plus FM. The latter is a little more
expensive in terms of time. The spectral method was by far the worst and failed to
even converge on many problems.

A number of areas for future study exist. It is important to know if the theoret-
ical gains in performance shown by our results hold in practice, so we are currently
implementing the parallel matrix-vector multiply on various parallel architectures.
The work on simultaneously partitioning a matrix and its explicit preconditioner can
be extended further to the case where there is an explicit factored preconditioner.
We also intend to optimize the research code we have been using for the partitioning
by incorporating many of the enhancements available in the best codes for standard
graph partitioning (e.g., lazy evaluation). Last, as the results from the Amatrix and
we1998 matrices show, edge cuts may only loosely correlate with communication vol-
ume. As we mentioned in section 4, this same approximation is made in the symmetric
graph partitioning approaches to the parallelization of partial differential equations
(PDEs) [22]. We believe the reason this issue has not received much attention is
that for PDE matrices the approximation is a good one since the vertices generally
have a small, nearly constant number of neighbors. Matrices from other applications,
like those we have considered, tend to have more complex structures and often the
approximation is not an accurate one. The hypergraph model of Çatalyürek and
Aykanat [7] elegantly encodes the correct metric of communication volume. However,
since it treats rows and columns differently, it fails to define a partition of both. Also,
it does not seem able to capture the application of multiple matrices. For these rea-
sons, a hybrid model that has the advantages of both approaches would be desirable.
Towards this end we plan to investigate alternative refinement strategies within our
bipartite model that target a more accurate metric for the communication cost.
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