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Abstract. Tensors have found application in a variety of fields, ranging from chemometrics
to signal processing and beyond. In this paper, we consider the problem of multilinear modeling
of sparse count data. Our goal is to develop a descriptive tensor factorization model of such data,
along with appropriate algorithms and theory. To do so, we propose that the random variation is
best described via a Poisson distribution, which better describes the zeros observed in the data as
compared to the typical assumption of a Gaussian distribution. Under a Poisson assumption, we fit
a model to observed data using the negative log-likelihood score. We present a new algorithm for
Poisson tensor factorization called CANDECOMP–PARAFAC alternating Poisson regression (CP-
APR) that is based on a majorization-minimization approach. It can be shown that CP-APR is a
generalization of the Lee–Seung multiplicative updates. We show how to prevent the algorithm from
converging to non-KKT points and prove convergence of CP-APR under mild conditions. We also
explain how to implement CP-APR for large-scale sparse tensors and present results on several data
sets, both real and simulated.
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1. Introduction. Tensors have found application in a variety of fields, ranging
from chemometrics to signal processing and beyond. In this paper, we consider the
problem of multilinear modeling of sparse count data. For instance, we may consider
data that encodes the number of papers published by each author at each conference
per year for a given time frame [13], the number of packets sent from one IP address
to another using a specific port [49], or to/from and term counts on emails [2]. Our
goal is to develop a descriptive model of such data, along with appropriate algorithms
and theory.

Let X represent an N -way data tensor of size I1×I2×· · ·×IN . We are interested
in an R-component nonnegative CANDECOMP/PARAFAC [8, 21] factor model

(1.1) M =

R∑
r=1

λr a(1)
r ◦ · · · ◦ a(N)

r ,

where ◦ represents outer product and a
(n)
r represents the rth column of the nonneg-

ative factor matrix A(n) of size In × R. We refer to each summand as a component.
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TENSORS, SPARSITY, AND NONNEGATIVE FACTORIZATIONS 1273

Assuming each factor matrix has been column-normalized to sum to one, we refer to
the nonnegative λr’s as weights.

In many applications such as chemometrics [48], we fit the model to the data
using a least squares (LS) criteria, implicitly assuming that the random variation in
the tensor data follows a Gaussian distribution. In the case of sparse count data,
however, the random variation is better described via a Poisson distribution [39, 46],
i.e.,

xi ∼ Poisson(mi)

rather than xi ∼ N(mi, σ
2
i ), where the subscript i is shorthand for the multi-index

(i1, i2, . . . , iN ). In fact, a Poisson model is a much better explanation for the zero
observations that we encounter in sparse data—these zeros just correspond to events
that were very unlikely to be observed. Thus, we propose that rather than using the
LS error function given by

∑
i |xi −mi|2, for count data we should instead minimize

the (generalized) Kullback–Leibler (KL) divergence

(1.2) f(M) =
∑
i

mi − xi logmi,

which equals the negative log-likelihood of the observations up to an additive constant.
Unfortunately, minimizing KL divergence is more difficult than LS error.

1.1. Contributions. Although other authors have considered fitting tensor data
using KL divergence [52, 9, 53], we offer the following contributions:
• We develop the nonnegative CANDECOMP–PARAFAC alternating Poisson

regression (CP-APR) model. The subproblems are solved using a majorization-
minimization (MM) approach. If the algorithm is restricted to a single inner iteration
per subproblem, it reduces to the standard Lee–Seung multiplicative for KL updates
[31, 32] as extended to tensors by Welling and Weber [52]. However, using multiple
inner iterations is shown to accelerate the method, similar to what has been observed
for LS [19].
• It is known that the Lee–Seung multiplicative updates may converge to a non-

stationary point [20], and Lin [34] has previously introduced a fix for the LS version of
the Lee–Seung method. We introduce a different technique for avoiding inadmissible
zeros (i.e., zeros that violate stationarity conditions) that is only a trivial change to
the basic algorithm and prevents convergence to nonstationary points. This technique
is straightforward to adapt to the matrix and/or LS cases as well.
• Assuming the subproblems can be solved exactly, we prove convergence of the

CP-APR algorithm. In particular, we can show convergence even for sparse input
data and solutions on the boundary of the nonnegative orthant.
• We explain how to efficiently implement CP-APR for large-scale sparse data.

Although it is well-known how to do large-scale sparse tensor calculations for the
LS fitting function [3], the Poisson likelihood fitting algorithm requires new sparse
tensor kernels. To the best of our knowledge, ours is the first implementation of any
KL-divergence-based method for large-scale sparse tensors.
• We present experimental results showing the effectiveness of the method on

both real and simulated data. In fact, the Poisson assumption leads quite naturally
to a generative model for sparse data.

1.2. Related work. Much of the past work in nonnegative matrix and tensor
analysis has focused on the LS error [44, 43, 6, 20, 26, 25, 23, 17, 27], which corresponds
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1274 ERIC C. CHI AND TAMARA G. KOLDA

to an assumption of normal independently identically distributed noise. The focus of
this paper is KL divergence, which corresponds to maximum likelihood estimation
under an independent Poisson assumption; see section 2.2. The seminal work in
this domain are the papers of Lee and Seung [31, 32], which propose very simple
multiplicative update formulas for both LS and KL divergence, resulting in a very
low cost per iteration. Welling and Weber [52] were the first to generalize the Lee
and Seung algorithms to nonnegative tensor factorization (NTF). Applications of
NTF based on KL-divergence include EEG analysis [40] and sound source separation
[16]. We note that generalizations of KL divergence have also been proposed in the
literature, including Bregman divergence [11, 10, 33] and beta divergence [9, 14].

In terms of convergence, Lin [34] and Gillis and Glineur [18] have shown conver-
gence of two different modified versions of the Lee–Seung method for LS. Finesso and
Spreij [15] (tensor extension in [53]) have shown convergence of the Lee–Seung method
for KL divergence; however, we show later that numerical issues arise if the iterates
come near the boundary. This is related to the problems demonstrated by Gonzalez
and Zhang [20] that show, in the case of LS loss, that the Lee and Seung method
can converge to non-KKT points; we show a similar example for KL divergence in
section 6.2.

Our convergence theory is not focused on the Lee–Seung algorithm but rather on a
Gauss–Seidel approach. The closest work is that of Lin [35], in which he considers the
matrix problem in the LS sense; in the same paper, he dismisses the KL divergence
problem as ill-defined but we address that issue in this paper by showing that the
convex hull of the level sets of the KL divergence problem is compact.

2. Notation and preliminaries.

2.1. Notation. Throughout, scalars are denoted by lowercase letters (a), vectors
by boldface lowercase letters (v), matrices by boldface capital letters (A), and higher-
order tensors by boldface Euler script letters (X). We let e denote the vector of all
ones and E denote the matrix of all ones. The jth column of a matrix A is denoted by
aj . We use multi-index notation so that a boldface i represents the index (i1, . . . , iN ).
We use subscripts to denote iteration index for infinite sequences, and the difference
between its use for an entry and its use as an iteration index should be clear by
context.

The notation ‖·‖ refers to the two-norm for vectors or Frobenius norm for matrices,
i.e., the sum of the squares of the entries. The notation ‖ · ‖1 refers to the one-norm,
i.e., the sum of the absolute values of the entries.

The outer product is denoted by ◦. The symbols ∗ and � represent elementwise
multiplication and division, respectively. The symbol � denotes Khatri–Rao matrix
multiplication. The mode-n matricization or unfolding of a tensor X is denoted by
X(n). See Appendix A for further details on these operations.

2.2. The Poisson distribution and KL divergence. In statistics, count data
is often best described as following a Poisson distribution. For a general discussion of
the Poisson distribution, see, e.g., [46]. We summarize key facts here.

A random variable X is said to have a Poisson distribution with parameter μ > 0
if it takes integer values x = 0, 1, 2, . . . with probability

(2.1) P (X = x) =
e−μμx

x!
.

The mean and variance of X are both μ; therefore, the variance increases along with
the mean, which seems like a reasonable assumption for count data. It is also useful
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Fig. 2.1. Illustration of Gaussian and Poisson distributions for two parameters. For both
examples, we assume that the variance of the Gaussian is equal to the mean m.

to note that the sum of independent Poisson random variables is also Poisson. This
is important in our case since each Poisson parameter is a multilinear combination of
the model parameters. We contrast Poisson and Gaussian distributions in Figure 2.1.
Observe that there is good agreement between the distributions for larger values of
the mean, μ. For small values of μ, however, the match is not as strong and the
Gaussian random variable can take on negative values.

We can determine the optimal Poisson parameters by maximizing the likelihood of
the observed data. Let x be a vector of observations and let μ be the vector of Poisson
parameters. (We assume that μi’s are not independent; otherwise the function would
entirely decouple in the parameters to be estimated.) Then the negative of the log of
the likelihood function for (2.1) is the KL divergence

(2.2)
∑
i

μi − xi logμi,

excepting the addition of the constant term
∑

i log(xi!), which is omitted.
Because we are working with sparse data, there are many instances for which

we expect xi = 0, which leads to some ambiguity in (2.2) if μi = 0. We assume
throughout that 0 · log(μ) = 0 for all μ ≥ 0. This is for notational convenience;
otherwise, we would write (2.2) as

∑
i μi −

∑
i:xi �=0 xi logμi.

3. CP-APR: Alternating Poisson regression. In this section we introduce
the CP-APR algorithm for fitting a nonnegative Poisson tensor decomposition (PTF)
to count data. The algorithm employs an alternating optimization scheme that se-
quentially optimizes one factor matrix while holding the others fixed; this is nonlinear
Gauss–Seidel applied to the PTF problem. The subproblems are solved via an MM
algorithm, as described in section 4.

3.1. The optimization problem. Our optimization problem is defined as

min f(M) ≡
∑
i

mi − xi logmi s.t. M =
�
λ;A(1), . . . ,A(N)

�
∈ Ω,(3.1)

where Ω = Ωλ × Ω1 × · · · × Ωn with

Ωλ = [0,+∞)R and Ωn =
{
A ∈ [0, 1]In×R

∣∣ ‖ar‖1 = 1 for r = 1, . . . , R
}
.

(3.2)

Here M = �λ;A(1), . . . ,A(N)� is shorthand notation for (1.1) [3]. Depending on
context, M represents the tensor itself or its constituent parts. For example, when
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1276 ERIC C. CHI AND TAMARA G. KOLDA

we say M ∈ Ω, it means that that the factor matrices have stochasticity constraints
on the columns.

The function f is not finite on all of Ω. For example, if there exists i such that
mi = 0 and xi > 0, then f(M) = +∞. If mi > 0 for all i such that xi > 0, however,
then we are guaranteed that f(M) is finite. Consequently, we will generally wish to
restrict ourselves to a domain for which f(M) is finite. We define

(3.3) Ω(ζ) ≡ conv({M ∈ Ω | f(M) ≤ ζ }),
where conv(·) denotes the convex hull. We observe that Ω(ζ) ⊂ Ω (strict subset)
since, for example, the all-zero model is not in Ω(ζ). The following lemma states that
Ω(ζ) is compact for any ζ > 0; the proof is given in Appendix B.

Lemma 3.1. Let f be as defined in (3.1) and Ω(ζ) be as defined in (3.3). For any
ζ > 0, Ω(ζ) is compact.

3.2. CP-APR main loop: Nonlinear Gauss–Seidel. We solve problem (3.1)
via an alternating approach, holding all factor matrices constant except one. Consider
the problem for the nth factor matrix. We note that there is scaling ambiguity that
allows us to express the same M in different ways, i.e.,

M =
�
A(1), . . . ,A(n−1),B(n),A(n+1), . . . ,A(N)

�
,(3.4)

where B(n) = A(n)Λ and Λ = diag(λ).(3.5)

The weights in (3.4) are omitted because they are absorbed into the nth mode. From

[3], we can express M as M(n) = B(n)Π(n), where B(n) is defined in (3.5) and

(3.6) Π(n) ≡
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
.

Thus, we can rewrite the objective function in (3.1) as

f(M) = eT
[
B(n)Π(n) −X(n) ∗ log

(
B(n)Π(n)

)]
e,

where e is the vector of all ones, ∗ denotes the elementwise product, and the log
function is applied elementwise. We note that it is convenient to update A(n) and λ
simultaneously since the resulting constraint on B(n) is simply B(n) ≥ 0.

Thus, at each inner iteration of the Gauss–Seidel algorithm, we optimize f(M)
restricted to the nth block, i.e.,

(3.7) B(n) = argmin
B≥0

fn(B) ≡ eT
[
BΠ(n) −X(n) ∗ log

(
BΠ(n)

)]
e.

The updates for λ and A(n) come directly from B(n). Note that some care must
be taken if an entire column of B(n) is zero; if the rth column is zero, then we can
set λr = 0 and b(n)

r to an arbitrary nonnegative vector that sums to one. The full
procedure is given in Algorithm 1; this is a variant (because of the handling of λ) of
nonlinear Gauss–Seidel. We note that the scaling and unscaling of the factor matrices
are common in alternating algorithms, though not always explicit in the algorithm
statement. There are many variations of this basic device; for instance, in the context
of the LS version of NTF, [17, Algorithm 2] collects the scaling information into an
explicit scaling vector that is “amended” after each inner iteration

We defer the proof of convergence until section 3.3, but we discuss how to check
for convergence here. First, we mention an assumption that is important to the theory
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TENSORS, SPARSITY, AND NONNEGATIVE FACTORIZATIONS 1277

Algorithm 1. CP-APR algorithm (ideal version).

Let X be a tensor of size I1 × · · · × IN . Let M = �λ;A(1), . . . ,A(N)� be an initial
guess for an R-component model such that M ∈ Ω(ζ) for some ζ > 0.

1: repeat
2: for n = 1, . . . , N do

3: Π←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
4: B← argmin

B≥0
eT
[
BΠ−X(n) ∗ log (BΠ)

]
e � subproblem

5: λ← eTB
6: A(n) ← BΛ−1

7: end for
8: until convergence

and also arguably practical. Let

(3.8) S(n)i =
{
j
∣∣ (X(n))ij > 0

}
denote the set of indices of columns for which the ith row ofX(n) is nonzero. If N = 3,
then X(1)(i, :) corresponds to a vectorization of the ith horizontal slice of X, X(2)(i, :)
to a vectorization of the ith lateral slice, and X(3)(i, :) to a vectorization of the ith
frontal slice. More generally, we can think of vectorizing “hyperslices” with respect
to each mode.

Assumption 3.2. The rows of the submatrix Π(n)(:,S(n)i ) (i.e., only the columns
corresponding to nonzero rows in X(n) are considered) are linearly independent for all
i = 1, . . . , In and n = 1, . . . , N .

Assumption 3.2 implies that |S(n)i | ≥ R for all i. Thus, we need to observe at
least R ·maxn In counts in the data tensor X, and the counts need to be sufficiently
distributed across X. Consequently, the conditions appeal to our intuition that there
are concrete limits on how sparse the data tensor can be with respect to how many
parameters we wish to fit. If, for example, we had X(1)(i, :) = 0, it is clear that we
can remove element i from the first dimension entirely since it contributes nothing.
We are making a stronger requirement: each element in each dimension must have at
least R nonzeros in its corresponding hyperslice.

A potential problem is that Assumption 3.2 depends on the current iterate, which
we cannot predict in advance. However, we observe that if λ > 0 and the factor
matrices have random uniform [0,1] positive entries and R ≤ minn

∏
m �=n Im, then

this condition is satisfied with probability one.1 This condition can be checked as the
iterates progress.

The matrix

(3.9) Φ(n) ≡
[
X(n) � (B(n)Π(n)

)]
Π(n)T,

with � denoting elementwise division, will come up repeatedly in the remainder of
the paper. For instance, we observe that the partial derivative of f with respect to
A(n) is ∂f/∂A(n) = (E −Φ(n))Λ, where E is the matrix of all ones. Consequently,

the matrix Φ(n) plays a role in checking convergence as follows.

1We can actually appeal to a weaker assumption: if the entries are drawn from any distribution
that is absolutely continuous with respect to the Lebesgue measure on [0,1], then the condition is
satisfied with probability one.
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Theorem 3.3. If λ > 0 and M = �λ;A(1), . . . ,A(N)� ∈ Ω(ζ) for some ζ > 0,
then M is a KKT point of (3.1) if and only if

(3.10) min
(
A(n),E−Φ(n)

)
= 0 for n = 1, . . . , N.

Proof. Since λ > 0, we can assume that λ has been absorbed into A(m) for some
m. Thus, we can replace the constraints λ ∈ Ωλ and A(m) ∈ Ωn with B(m) ≥ 0. In
this case, the partial derivatives are

(3.11)
∂f

∂B(m)
= E−Φ(m) and

∂f

∂A(n)
=
(
E−Φ(n)

)
Λ for n 
= m.

Since M ∈ Ω(ζ) for some ζ > 0, we know that not all elements of M are zero; thus,
the set of active constraints are linearly independent. The following conditions define
a KKT point [42]:

(3.12)

E−Φ(m) −Υ(m) = 0,

(E−Φ(n))Λ−Υ(n) − e(η(n))T = 0, eTA(n) = 1 for n 
= m,

A(n) ≥ 0, Υ(n) ≥ 0, Υ(n) ∗A(n) = 0 for n 
= m,

B(m) ≥ 0, Υ(m) ≥ 0, Υ(m) ∗B(m) = 0.

Here Υ(n) are the Lagrange multipliers for the nonnegativity constraints and η(n) are
the Lagrange multipliers for the stochasticity constraints.

IfM = 〈λ;A(1), . . . ,A(N)〉 is a KKT point, then from (3.12) we have that Υ(m) =

E −Φ(m) ≥ 0, B(m) ≥ 0, and Υ(m) ∗B(m) = 0. Thus, min(A(m)Λ,E−Φ(m)) = 0.
Since λ > 0 and m is arbitrary, (3.10) follows immediately.

If, on the other hand, (3.10) is satisfied, choosing Υ(m) = E−Φ(m) and Υ(n) =

(E−Φ(n))Λ and η(n) = 0 for n 
= m satisfies the KKT conditions in (3.12). Hence,
M must be a KKT point.

Observe that the condition λ > 0 makes λ moot in the KKT conditions—this
reflects the scaling ambiguity that is inherent in the model.

From Theorem 3.3 and because feasibility is always maintained, we can check for
convergence by verifying |min(A(n),E−Φ(n))| ≤ τ for n = 1, . . . , N , where τ > 0 is
some specified convergence tolerance.

3.3. Convergence theory for CP-APR. We require the strict convexity of f
in each of the block coordinates. This is ensured under Assumption 3.2.

Lemma 3.4 (strict convexity of subproblem). Let fn(·) be the function f restricted
to the nth block as defined in (3.7). If Assumption 3.2 is satisfied, then fn(B) is strictly

convex over Bn = {B ∈ [0,+∞)In×R : BΠ(n) 
= 0}.
Proof. In the proof, we drop the n’s for convenience. First note that B is convex.

LetC = BT. We can rewrite (3.7) as min f(CT) =
∑

ij c
T
i πj−xij log(cTi πj) subject to

C ≥ 0. Hence, it is sufficient to show that the function f̂(C) = −∑ij xij log(c
T
i πj)

is strictly convex over the convex set C = {C ∈ [0,+∞)R×In : CTΠ 
= 0}. Fix
C̄, Ĉ ∈ C such that C̄ 
= Ĉ. Since the inner product is affine and log is a strictly
concave function, we need only show that there exists some i and j such that xij 
= 0

and ĉTi πj 
= c̄Ti πj . We know at least one column must differ since C̄ 
= Ĉ; let i
correspond to that column and define d = ĉi − c̄i 
= 0. By Assumption 3.2, we know
that Π(:, Si) has full row rank. Thus, there exists a column j of Π such that xij 
= 0

and dTπj 
= 0. Hence, the claim.
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Here we state our main convergence result. Although this result assumes that the
subproblems can be solved exactly (which is not the case in practice), it gives some
idea as to the convergence behavior of the method. We follow the reasoning of the
proof of convergence of nonlinear Gauss–Seidel [5, Proposition 3.9], adapted here for
the way that λ is handled.

Theorem 3.5 (convergence of CP-APR). Suppose that f(M) is strictly convex
with respect to each block component and that it is minimized exactly for each block
component subproblem of CP-APR. Let M∗ be a limit point of the sequence {Mk}
such that λ∗ > 0. Then M∗ is a KKT point of (3.1).

Proof. Let Mk = 〈λk,A
(1)
k , . . . ,A

(N)
k 〉 be the kth iterate produced by the outer

iterations of Algorithm 1. Define Z
(n)
k to be the nth iterate in the inner loop of outer

iteration k with the λ-vector absorbed into the nth factor, i.e.,

Z
(n)
k = 〈A(1)

k+1, . . . ,A
(n−1)
k+1 ,B

(n)
k+1,A

(n+1)
k , . . . ,A

(N)
k 〉,

where B
(n)
k+1 is the solution to the nth subproblem at iteration k. This defines A

(n)
k+1

to be the column-normalized version of B
(n)
k+1, i.e., A

(n)
k+1 = B

(n)
k+1(diag(B

(n)
k+1e))

−1.
Taking advantage of the scaling ambiguity to shift the weights between factors yields

f(Z
(n)
k ) = f(〈A(1)

k+1, . . . ,A
(n−1)
k+1 ,A

(n)
k+1 diag(B

(n)
k+1e),A

(n+1)
k , . . . ,A

(N)
k 〉),

= f(〈A(1)
k+1, . . . ,A

(n−1)
k+1 ,A

(n)
k+1,A

(n+1)
k diag(B

(n)
k+1e), . . . ,A

(N)
k 〉),

≥ f(〈A(1)
k+1, . . . ,A

(n−1)
k+1 ,A

(n)
k+1,B

(n+1)
k+1 , . . . ,A

(N)
k 〉) = f(Z

(n+1)
k ).

Observe that Z
(N)
k = 〈A(1)

k+1, . . . ,A
(N−1)
k+1 ,A

(N)
k+1 diag(λk+1)〉, so there is a correspon-

dence between Z
(N)
k and Mk+1 such that f(Z

(N)
k ) = f(Mk+1). For convenience,

we define Z
(0)
k = 〈A(1)

k diag(λk),A
(2)
k , . . . ,A

(N)
k 〉. Since we assume the subproblem is

solved exactly at each iteration, we have

(3.13) f(Mk) ≥ f(Z(1)
k ) ≥ f(Z(2)

k ) ≥ · · · f(Z(N−1)
k ) ≥ f(Mk+1) for all k.

Recall that Ω(ζ) is compact by Lemma 3.1. Since the sequence {Mk} is contained
in the set Ω(ζ), it must have a convergent subsequence. We let {k�} denote the indices
of that convergent subsequence and M∗ = 〈λ∗,A(1)

∗ , . . . ,A(N)
∗ 〉 denote its limit point.

By continuity of f , f(Mk�
)→ f(M∗).

We first show that ‖A(1)
k�+1−A(1)

k�
‖ → 0. Assume the contrary, i.e., that it does not

converge to zero. Let γk�
= ‖Z(1)

k�
− Z

(0)
k�
‖. By possibly restricting to a subsequence

of {k�}, we may assume there exists some γ0 > 0 such that γ(k�) ≥ γ0 for all 	. Let

S
(1)
k�

= (Z
(1)
k�
−Z

(0)
k�

)/γk�
; then Z

(1)
k�

= Z
(0)
k�

+ γk�
S
(1)
k�

, ‖S(1)
k�
‖ = 1, and S

(1)
k�

differs from

zero only along the first block component. Notice that {S(1)
k�
} belongs to a compact

set and therefore has a limit point S(1)
∗ . By restricting to a further subsequence of

{k�}, we assume that S
(1)
k�
→ S(1)

∗ .

Let us fix some ε ∈ [0, 1]. Notice that 0 ≤ εγ0 ≤ γk�
. Therefore, Z

(0)
k�

+εγ0S
(1)
k�

lies

on the line segment joining Z
(0)
k�

and Z
(0)
k�

+γk�
S
(1)
k�

= Z
(1)
k�

and belongs to Ω(ζ) because
Ω(ζ) is convex. Using the convexity of f with respect to the first block component

and the fact that Z
(1)
k�

minimizes f over all Z that differ from Z
(1)
k�

in the first block
component, we obtain

f(Z
(1)
k�

) = f(Z
(0)
k�

+ γk�
S
(1)
k�

) ≤ f(Z(0)
k�

+ εγ0S
(1)
k�

) ≤ f(Z(0)
k�

).
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Since f(Z
(0)
k�

) = f(Mk�
)→ f(M∗), (3.13) shows that f(Z

(1)
k�

) also converges to f(M∗).
Taking limits as 	 tends to infinity, we obtain

f(M∗) ≤ f(Z(0)
∗ + εγ0S

(1)
∗ ) ≤ f(M∗),

where Z(0)
∗ is just M∗ with λ∗ absorbed into the first component. We conclude that

f(M∗) = f(Z(0)
∗ + εγ0S

(1)
∗ ) for every ε ∈ [0, 1]. Since γ0S

(1)
∗ 
= 0, this contradicts the

strict convexity of f as a function of the first block component. This contradiction

establishes that ‖A(1)
k�+1 −A

(1)
k�
‖ → 0. In particular, Z

(1)
k�

converges to Z(0)
∗ .

By definition of Z
(1)
k�

and the assumption that each subproblem is solved exactly,
we have

f(Z
(1)
k�

) ≤ f(〈B,A(2)
k�
, . . . ,A

(N)
k�
〉) for all B ≥ 0.

Taking limits as 	→∞, we obtain

f(M∗) ≤ f(〈B,A(2)
∗ , . . . ,A(N)

∗ 〉) for all B ≥ 0.

In other words, B(1)
∗ = A(1)

∗ diag(λ∗) is the minimizer of f with respect to the first

block components with the remaining components are fixed at A(2)
∗ through A(N)

∗ .
From the KKT conditions [42], we have that

B(1)
∗ ≥ 0,

∂f

∂B(1)
(B(1)

∗ ) ≥ 0, B(1)
∗ ∗

∂f

∂B(1)
(B(1)

∗ ) = 0.

In turn, since λ∗ > 0, we have min(A(1)
∗ ,E−Φ(1)

∗ ) = 0.

Repeating the previous argument shows that ‖A(2)
k�+1 − A

(2)
k�
‖ → 0 and that

min(A(2)
∗ ,E − Φ(2)

∗ ) = 0. Continuing inductively, min(A(n)
∗ ,E−Φ(n)

∗ ) = 0 for n =
1, . . . , N . Thus, by Theorem 3.3, M∗ is a KKT point of f(M).

Before proceeding to the discussion solving the subproblem, we point out that
remarkably very little is assumed about the objective function f in Theorem 3.5. The
proof required that f is differentiable, strictly convex in each of its block components,
and there is a ξ > 0 such that the level set Ω(ξ) is compact. The upshot is that
Theorem 3.5 applies equally well to other choices of f corresponding to other members
in the family of beta distributions that are convex, namely, the divergences that
correspond to β ∈ [1, 2] [14]. In fact, it was also observed in [17] that “rescaling does
not interfere with the convergence of the Gauss–Seidel iterations” (in the context of
the LS formulation of NTF).

4. Solving the CP-APR subproblem via MM. The basic idea of an MM
algorithm is to convert a hard optimization problem (e.g., nonconvex and/or non-
differentiable) into a series of simpler ones (e.g., smooth convex) that are easy to
minimize and that majorize the original function, as follows.

Definition 4.1. Let f and g be real-valued functions on R
n and R

n × R
n,

respectively. We say that g majorizes f at x ∈ R
n if g(y,x) ≥ f(y) for all y ∈ R

n

and g(x,x) = f(x).
If f(x) is the function to be optimized and g(·,x) majorizes f at x, the basic

MM iteration is xk+1 = argminy g(y,xk). It is easy to see that such iterates always
take nonincreasing steps with respect to f since f(xk+1) ≤ g(xk+1,xk) ≤ g(xk,xk) =
f(xk), where xk is the current iterate and xk+1 is the optimum computed at that
iterate.
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Algorithm 2. Subproblem solver for Algorithm 1.

1: B← A(n)Λ
2: repeat � subproblem loop
3: Φ← (X(n) � (BΠ)

)
ΠT

4: B← B ∗Φ
5: until convergence

Consider the nth subproblem in (3.7). Here we drop the n’s for convenience so
that (3.7) reduces to

(4.1) min
B≥0

f(B) ≡ eT [BΠ−X ∗ log(BΠ)] e.

Recall that X is the nonnegative data tensor reshaped to a matrix of size I×J , Π is a
nonnegative matrix of size R×J with rows that sum to 1, and B is a nonnegative ma-
trix of size I×R. For clarity in the ensuing discussion, we also restate Assumption 3.2
in terms of the local variables for this section as follows.

Assumption 4.2. The rows of the submatrix Π (:, { j | Xij > 0 }) (i.e., only the
columns corresponding to nonzero rows in X are considered) are linearly independent
for all i = 1, . . . , I.

According to Assumption 4.2, for every i there is at least one j such that xij >
0. Thus, we can assume that we have B̄ ≥ 0 such that f(B̄) is finite. We now
introduce the majorization used in our subproblem solver. This majorization is also
a special case of the one derived in [14] when β = 1 and has a long history in image
reconstruction that predates its use in NMF [38, 47, 30]. The objective f is majorized
at B̄ by the function

(4.2) g(B, B̄) =
∑
rij

[
birπrj − αrijxij log

(
birπrj
αrij

)]
, where αrij =

b̄irπrj∑
r b̄irπrj

.

The proof of this fact is straightforward and thus relegated to Appendix C. The
advantage of this majorization is that the problem is now completely separable in
terms of bir, i.e., the individual entries of B. Moreover, g(·, B̄) has a unique global
minimum with an analytic expression, given by B ∗Φ, where Φ is as defined in (3.9)
and depends on B. A proof is provided in Appendix C. The MM algorithm iterations
are then defined by

(4.3) Bk+1 = ψ(Bk) ≡ Bk ∗Φ(Bk), where Φ(Bk) = [X � (BkΠ)]Π,

and X and Π come from (4.1). If B0 ≥ 0, clearly Bk ≥ 0 for all k. Observe that
∇f(B) = E−Φ(B). We discuss in section 5.3 how to exploit this simple relationship
to quickly compute stopping rules for the algorithm. The MM algorithm to solve the
Gauss–Seidel subproblem of line 4 in Algorithm 1 is given in Algorithm 2.

The monotonic decrease in objective function does not guarantee that the MM
iterates will converge to the desired global minimizer of the subproblem. Nonetheless,
the following theorem shows that under mild conditions on the starting point B0

(discussed further in section 5.2), the MM iterates will converge to the unique global
minimum of (4.1). The proof follows the reasoning of the convergence proof of an
algorithm for fitting a regularized Poisson regression problem given in [28] and is
given in Appendix D.
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Theorem 4.3 (convergence of MM algorithm). Let f be as defined in (4.1) and
assume Assumption 4.2 holds, let B0 be a nonnegative matrix such that f(B0) is finite
and (B0)ir > 0 for all (i, r) such that (Φ(B∗))ir > 1, and let the sequence {Bk} be
defined as in (4.3). Then {Bk} converges to the global minimizer of f .

Note that we make a modest but very useful generalization of existing results by
allowing iterates to be on (or very close to) the boundary. Prior convergence results,
including [28, 15, 53], assume that all iterates are strictly positive. Though true in
exact arithmetic, in numerical computations it is not uncommon for some iterates to
become zero numerically. In section 5.2, we show how to ensure the condition on B0

holds in practice.

5. CP-APR implementation details. The previous algorithms omit many
details and numerical checks that are needed in any practical implementation. Thus,
Algorithm 3 provides a detailed version that can be directly implemented. A highlight
of this implementation is the “inadmissible zero” avoidance, which fixes the problem
of getting stuck at a zero value with multiplicative updates.

5.1. Lee–Seung is a special case of CP-APR. If we take only one iteration
of the subproblem loop (i.e., setting 	max = 1), then CP-APR is the Lee–Seung multi-
plicative update algorithm for the KL divergence. Thus, we can view the Lee–Seung
algorithm as a special case of our algorithm where we do not solve the subproblems
exactly; quite the contrary, we take only one step toward the subproblem solution.

5.2. Inadmissible zero avoidance. A well-known problem with multiplicative
updates is that some elements may get “stuck” at zero; see, e.g., [20]. For example, if

a
(n)
ir = 0, then the multiplicative updates will never change it. In many cases, a zero

entry may be the correct answer, so we want to allow it. In other cases, though, the
zero entry may be incorrect in the sense that it does not satisfy the KKT conditions,

i.e., a
(n)
ir = 0 but 1 − Φ

(n)
ir < 0. We refer to these values as inadmissible zeros.

We correct this problem before we enter into the multiplicative update phase of the
algorithm. In lines 4 thru 5 of Algorithm 3, any inadmissible zeros (or near-zeros)
are “scooched” away from zero and into the interior. The amount of the scooch is
controlled by the user-defined parameter κ. The condition in Theorem 4.3 is exactly
that the starting point should not have any zeros that are ultimately inadmissible. If
we discover that a sequence of iterates leads to an inadmissible zero (or almost-zero),
we restart the method by restarting the method with a new starting point. This
adjustment prevents convergence to non-KKT points. Note that all the quantities
needed to perform the check are precomputed and that there is no change to the
algorithm besides adjusting a few zero entries in the current factor matrix. The fix for
the inadmissible zeros is compatible with the Lee–Seung algorithm for LS error as well.

Lin [34] has made a similar observation in the LS case and applied changes to his
gradient descent version of the Lee–Seung method. Our correction is different and
is directly incorporated into the multiplicative update scheme rather than requiring
a different update formula. Gillis and Glineur [18] proposed a more drastic fix by
restricting the factor matrices to have entries in [ε,∞) for some small positive ε.
Avoiding all zeros clearly rules out the possibility of getting stuck at an inadmissible
zero, but does so at the expense of eliminating any hope of obtaining sparse factor
matrices, a desirable property in many applications.

5.3. Practical considerations on convergence. The convergence conditions
on the subproblem require that min(B(n),E−Φ(n)) = 0. We do not require the value
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Algorithm 3. Detailed CP-APR algorithm.

Let X be a tensor of size I1 × · · · × IN . Let M = 〈λ;A(1), . . . ,A(N)〉 be an initial
guess for an R-component model such that M ∈ Ω(ζ) for some ζ > 0.
Choose the following parameters:

• kmax = Maximum number of outer iterations
• 	max = Maximum number of inner iterations (per outer iteration)
• τ = Convergence tolerance on KKT conditions (e.g., 10−4)
• κ = Inadmissible zero avoidance adjustment (e.g., 0.01)
• κtol = Tolerance for identifying a potential inadmissible zero (e.g., 10−10)
• ε = Minimum divisor to prevent divide-by-zero (e.g., 10−10)

1: for k = 1, 2, . . . , kmax do
2: isConverged← true
3: for n = 1, . . . , N do

4: S(i, r)←
{
κ, if k > 1,A(n)(i, r) < κtol, and Φ(n)(i, r) > 1,

0, otherwise

5: B← (A(n) + S)Λ

6: Π←
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
7: for 	 = 1, 2, . . . , 	max do � subproblem loop
8: Φ(n) ← (X(n) � (max(BΠ, ε))

)
ΠT

9: if |min(B,E−Φ(n))| < τ then
10: break
11: end if
12: isConverged← false
13: B← B ∗Φ(n)

14: end for
15: λ← eTB
16: A(n) ← BΛ−1

17: end for
18: if isConverged = true then
19: break
20: end if
21: end for

to be exactly zero but instead check that it is smaller in magnitude than the user-
defined parameter τ . We break out of the subproblem loop as soon as this condition
is satisfied.

From Theorem 3.3, we can check for overall convergence by verifying (3.10). We
do not want to calculate this at the end of every n-loop because it is expensive.
Instead, we know that the iterates will stop changing once we have converged and
so we can validate the convergence of all factor matrices by checking that no factor
matrix has been modified and every subproblem has converged.

5.4. Sparse tensor implementation. Consider a large-scale sparse tensor that
is too large to be stored as a dense tensor requiring

∏
n In memory. In this case, we can

store the tensor as a sparse tensor as described in [3], requiring only (N +1) · nnz(X)
memory.

The elementwise division in the update of Φ requires that we divide the tensor
(in matricized form) X by the current model estimate (in matricized form) M = BΠ.
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Unfortunately, we cannot afford to store M explicitly as a dense tensor because it
is the same size as X. In fact, we generally cannot even form Π explicitly because
it requires almost as much storage as M. We observe, however, that we need only
calculate the values of M that correspond to nonzeros in X.

Let P = nnz(X). Then we can store the sparse tensor X as a set of values and
multi-indices, (v(p), i(p)) for p = 1, . . . , P . In order to avoid forming the current model
estimate, M, as a dense object, we will store only selected rows of Π, one per nonzero
in X; we denote these rows by w(p) for p = 1, . . . , P . The pth vector is given by the
elementwise product of rows of the factor matrices, i.e.,

w(p) = A(1)(i
(p)
1 , :) ∗ · · · ∗A(n−1)(i

(p)
n−1, :) ∗A(n+1)(i

(p)
n+1, :) ∗ · · · ∗A(N)(i

(p)
N , :).

In order to determine X̂ = X�M in the calculation of Φ, we proceed as follows. The
tensor X̂ will have the same nonzero pattern as X, and we let v̂(p) denote its values.
It can be determined that

v̂(p) = x(p)/
〈
w(p),A(n)(i(p)n , :)

〉
.

To calculate Φ = X̂Π, we simply have

Φ(i′, r) =
∑

p:i
(p)
n =i′

v̂(p)w(p)(r).

The storage of the w(p) for p = 1, . . . , P vectors and the entries v̂(p) requires (R+1)P
additional storage.

6. Numerical results for CP-APR.

6.1. Comparison of objective functions for sparse count data. We con-
tend that for sparse count data, KL divergence (1.2) is a better objective function.
To support our claim, we consider simulated data where we know the correct answer.
Specifically, we consider a three-way tensor (N = 3) of size 1000×800×600 and R = 10

factors. It will be generated from a model M = �λ;A(1), . . . ,A(N)�. The entries of

the vector λ are selected uniformly at random from [0, 1]. Each factor matrix A(n) is

generated as follows: (1) For each column in A(n), randomly select 10% (i.e., 1/R) of
the entries uniformly at random from the interval [0, 100]. (2) The remaining entries
are selected uniformly at random from [0, 1]. (3) Each column is scaled so that its
1-norm is 1 (i.e., its sum is 1). An “observed” tensor can be thought of as the outcome
of tossing ν � ∏ In balls into

∏
In empty urns, where each entry of the tensor cor-

responds to an urn. For each ball, we first draw a factor r with probability λr/
∑
λr.

The indices (i, j, k) are selected randomly proportional to a
(n)
r for n = 1, 2, 3. In other

words, the ball is then tossed into the (i, j, k)th urn with probability a
(1)
ir a

(2)
jr a

(3)
kr . In

this manner, the balls are allocated across the urns independently of each other. This
procedure generates entries xi that are each distributed as Poisson(mi). We adjust
the final λ so that the scale matches that of X, i.e., λ← νλ/‖λ‖. We generate prob-
lems where the number of observations ranges from 480,000 (0.1%) down to 24,000
(0.005%). Recall that Assumption 3.2 implies that the absolute minimum number of
observations is R · maxn In = 10, 000. We have used very few observations, as real
problems do indeed tend to be this sparse.

Table 6.1 shows comparisons of four methods. The first two are optimizing LS:
Lee–Seung for LS and alternating LS with no nonnegativity constraints (CP-ALS).
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Table 6.1

Accuracy comparison (mean of 10 trials) using the FMS and the number of columns correctly
identified in the first factor matrix.

LS KL Divergence
Lee–Seung LS CP-ALS Lee–Seung KL CP-APR

Observations FMS #Cols FMS #Cols FMS #Cols FMS #Cols
480000 (0.100%) 0.58 6.4 0.71 7.3 0.89 8.7 0.96 9.5
240000 (0.050%) 0.51 5.4 0.72 7.4 0.83 8.2 0.91 9.2
48000 (0.010%) 0.37 3.8 0.59 6.3 0.76 7.5 0.80 7.9
24000 (0.005%) 0.33 3.5 0.51 5.7 0.72 6.6 0.74 6.9
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Fig. 6.1. Lee–Seung permitting inadmissible zeros (blue solid line) and avoiding inadmissible
zeros (red dashed line).

The last two are optimizing KL divergence: Lee–Seung for KL divergence and our
method (CP-APR). We have also tested the modified Lee–Seung method of Finesso
and Spreij [15, 53], but it is only a scaled version of the Lee–Seung method for KL
divergence and gave nearly identical results, which are omitted. All implementations
are from version 2.5 of Tensor Toolbox for MATLAB [4, 3, 2]; exact parameter settings
are provided in Appendix E. We report the factor match score (FMS), a measure in
[0, 1] of how close the computed solution is to the true solution. A value of 1 is ideal.
Since the FMS measure is somewhat abstract, we also report the number of columns
in the first factor matrix such that the cosine of the angle between the true solution
and the computed solution is greater than 0.95. A value of 10 is ideal since we have
used R = 10. The reported values are averages over 10 problems. See Appendix E for
precise formulas for both measures. Although these problems are extremely sparse, all
methods are able to correctly identify components in the data. Overall, the methods
optimizing KL divergence are superior to those optimizing LS. We also observe that
CP-APR is an improvement compared to Lee–Seung KL; we provide later evidence
that this improvement is more likely due to the inadmissible zero fix than the extra
inner iterations (which provide a benefit of enhanced speed rather than accuracy).

6.2. Fixing misconvergence of Lee–Seung. We demonstrate the effective-
ness of our simple fix for avoiding inadmissible zeros, as described in section 5.2. Our
technique is based on the same observation on inadmissible zeros as in Lin [34], but
the change to the algorithm is different. As in [20], we consider fitting a rank-10
bilinear model for a 25 × 15 dense positive matrix with entries drawn independently
and uniformly from [0, 1]. We apply CP-APR using 	max = 1, τ = 10−15, ε = 0, κtol =
100·εmach. We do two runs: one with κ = 0, corresponding to the standard Lee–Seung
(KL version) algorithm, and the other with κ = 10−10 to move away from inadmissible
zeros. In both runs we use the same strictly positive initial guess. Figure 6.1 shows
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Table 6.2

CP-APR with different values of �max for sparse count data over 100 trials.

(a) FMS

�max 1 5 10
Median 0.9858 0.9858 0.9862
Mean 0.9483 0.9514 0.9603

(b) Number of multiplicative updates

�max 1 5 10
Median 9819 7655 7290
Mean 16370 11710 11660

(c) Time (seconds)

�max 1 5 10
Median 168.70 68.98 55.00
Mean 299.60 106.10 87.92

the magnitude of the KKT residual over more than 105 iterations. When κ > 0, the
sequence clearly convergences. On the other hand, when κ = 0, the iterates appear to
get stuck at a non-KKT point. Closer inspection of the factor matrix iterates reveals
a single offending inadmissible zero, i.e., its partial derivative is −0.0016 but should
be nonnegative. Hence, we use positive values of κ in our experiments.

6.3. The benefit of extra inner iterations. We show that increasing the
maximum number of inner iterations 	max can accelerate the convergence in Table 6.2.
Recall that 	max = 1 corresponds to the Lee–Seung algorithm [31, 52]. We consider a
three-way tensor (N = 3) of size 500× 400× 300 and R = 5 factors. We generate 100

problem instances from 100 randomly generated models M = �λ;A(1), . . . ,A(N)� as
described in section 6.1 with 0.1% observations. We compare CP-APR with 	max =
1, 5, and 10, and the other parameters are set as kmax = 106, τ = 10−4, κ = 10−8,
κtol = 100 · εmach, ε = 0. We track both the number of multiplicative updates
(line 8 of Algorithm 3) and the CPU time using the MATLAB command cputime.
The experiments were performed on an iMac computer with a 3.4-GHz Intel Core
i7 processor and 8 GB of RAM. Table 6.2(a) reports the FMS scores as we vary
	max, and we observe that the value of 	max does not significantly impact accuracy.
However, we observe that increasing 	max can decrease the overall work and runtime.
Tables 6.2(b) and 6.2(c) present the average number of multiplicative updates and
total runtimes, respectively. The distribution of updates and times was highly skewed
as some problems required a substantial number of iterations. Nonetheless, we see
a monotonic decrease in the number of updates and time as 	max increases. The
differences are more substantial when comparing wall clock time. The reason for the
disproportionate decrease in wall clock time compared to the tally of updates is that
the cost of the calculation of Π (in line 6 of Algorithm 3) is amortized over all the
subproblem iterations.

6.4. Enron data. We consider the application of CP-APR to email data from
the infamous Federal Energy Regulatory Commission investigation of Enron Corpo-
ration. We use the version of the data set prepared by Zhou et al. [56] and further
processed by Perry and Wolfe [45], which includes detailed profiles on the employees.
The data is arranged as a three-way tensor X arranged as sender × receiver × month,
where entry (i, j, k) indicates the number of messages from employee i to employee j
in month k. The original data set had 38,388 messages (technically, there were only
21,635 messages but some messages were sent to multiple recipients and so are counted
multiple times) exchanged between 156 employees over 44 months (November 1998–
June 2002). We preprocessed the data, removing months that had fewer than 300 mes-
sages and removing any employees that did not send and receive an average of at least

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

98
.2

06
.2

19
.3

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TENSORS, SPARSITY, AND NONNEGATIVE FACTORIZATIONS 1287

one message per month. Ultimately, our data set spanned 28 months (December 1999–
March 2002) and involved 105 employees and a total of 33,079 messages. The data is
arranged so that the senders are sorted by frequency (greatest to least). The tensor
representation has a total of 8,540 nonzeros. (Many of the messages occur between
the same sender-receiver pair in the same time period.) The tensor is 2.7% dense.

We apply CP-APR to find a model for the data. There is no ideal method for
choosing the number of components. Typically, this value is selected through trial and
error, trading off accuracy (as the number of components grows) and model simplicity.
Here we show results for R = 10 components. We use the same settings for CP-APR
as specified in Appendix E.

Figure 6.2 illustrates six components in the resulting factorization; the other four
are shown in Appendix F. For each component, the top two plots shows the activity
of senders and receivers, with the employees ordered from left to right by frequency
of sending emails. Each employee has a symbol indicating their seniority (junior or
senior), gender (male or female), and department (legal, trading, other). The sender
and receiver factors have been normalized to sum to one, so the height of the marker
indicates each employee’s relative activity within the component. The third com-
ponent (in the time dimension) is scaled so that it indicates total message volume
explained by that component. The light gray line shows the total message volume. It
is interesting to observe how the components break down into specific subgroups. For
instance, component 1 in Figure 6.2(a) consists of nearly all “legal” and is majority
female. This can be contrasted to component 5 in Figure 6.2(d), which is nearly all
“other” and also majority female. Component 3 in Figure 6.2(b) is a conversation
among “senior” staff and mostly male; on the other hand, “junior” staff are more
prominent in Component 4 in Figure 6.2(c). Component 8 in Figure 6.2(e) seems
to be a conversation among “senior” staff after the SEC investigation has begun.
Component 10 in Figure 6.2(f) indicates that a couple of “legal” staff are communi-
cating with many “other” staff immediately after the SEC investigation is announced,
perhaps advising the “other” staff on appropriate responses to investigators.

6.5. SIAM data. As another example, we consider 5 years (1999–2004) of SIAM
publication metadata that has previously been used by Dunlavy et al. [12]. Here, we
build a three-way sparse tensor based on title terms (ignoring common stop words),
authors, and journals. The author names have been normalized to last name plus
initial(s). The resulting tensor is of size 4,952 (terms) × 6,955 (authors) × 11 (jour-
nals) and has 64,133 nonzeros (0.017% dense). The highest count is 17 for the triad
(“education,” “Schnabel B,” “SIAM Rev.”), which is a result of Prof. Schnabel’s
writing brief introductions to the education column for SIAM Review. In fact, the
next four highest counts correspond to the terms “problems,” “review,” “survey,” and
“techniques” and to authors “Flaherty J” and “Trefethen N.”

Computing a 10-component factorization yields the results shown in Table 6.3.
We use the same settings for CP-APR as specified in Appendix E. In the table, for the
term and author modes, we list any entry whose factor score is greater than 10−7 · In,
where In is the size of the nth mode; in the journal mode, we list any entry greater
than 0.01. The tenth component corresponds to introductions written by section
editors for SIAM Review. The first component shows that there is overlap in both
authors and title keyword between SIAM J. Computing and SIAM J. Discrete Math.
The second and third components have some overlap in topic and two overlapping
authors, but different journals. Both components 8 and 9 correspond to the same
journal but reveal two subgroups of authors writing on slightly different topics.
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Fig. 6.2. Components from factorizing the Enron data.
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Table 6.3

Highest-scoring items in a 10-term factorization of the term × author × journal tensor from
five years of SIAM publication data.

# Terms Authors Journals
1 graphs, problem, algorithms,

approximation, algorithm,
complexity, optimal, trees,
problems, bounds

Kao MY, Peleg D, Motwani R,
Cole R, Devroye L, Goldberg
LA, Buhrman H, Makino K, He
X, Even G

SIAM J Comput,
SIAM J Discrete
Math

2 method, equations, methods,
problems, numerical,
multigrid, finite, element,
solution, systems

Chan TF, Saad Y, Golub GH,
Vassilevski PS, Manteuffel TA,
Tuma M, Mccormick SF, Russo
G, Puppo G, Benzi M

SIAM J Sci Comput

3 finite, methods, equations,
method, element, problems,
numerical, error, analysis,
equation

Du Q, Shen J, Ainsworth M,
Mccormick SF, Wang JP,
Manteuffel TA, Schwab C,
Ewing RE, Widlund OB,
Babuska I

SIAM J Numer Anal

4 control, systems, optimal,
problems, stochastic, linear,
nonlinear, stabilization,
equations, equation

Zhou XY, Kushner HJ, Kunisch
K, Ito K, Tang SJ, Raymond
JP, Ulbrich S, Borkar VS,
Altman E, Budhiraja A

SIAM J Control
Optim

5 equations, solutions, problem,
equation, boundary,
nonlinear, system, stability,
model, systems

Wei JC, Chen XF, Frid H, Yang
T, Krauskopf B, Hohage T, Seo
JK, Krylov NV, Nishihara K,
Friedman A

SIAM J Math Anal

6 matrices, matrix, problems,
systems, algorithm, linear,
method, symmetric, problem,
sparse

Higham NJ, Guo CH, Tisseur
F, Zhang ZY, Johnson CR, Lin
WW, Mehrmann V, Gu M, Zha
HY, Golub GH

SIAM J Matrix Anal
Appl

7 optimization, problems,
programming, methods,
method, algorithm, nonlinear,
point, semidefinite,
convergence

Qi LQ, Tseng P, Roos C, Sun
DF, Kunisch K, Ng KF,
Jeyakumar V, Qi HD,
Fukushima M, Kojima M

SIAM J Optim

8 model, nonlinear, equations,
solutions, dynamics, waves,
diffusion, system, analysis,
phase

Venakides S, Knessl C, Sherratt
JA, Ermentrout GB, Scherzer
O, Haider MA, Kaper TJ, Ward
MJ, Tier C, Warne DP

SIAM J Appl Math

9 equations, flow, model,
problem, theory, asymptotic,
models, method, analysis,
singular

Klar A, Ammari H, Wegener R,
Schuss Z, Stevens A, Velazquez
JJL, Miura RM, Movchan AB,
Fannjiang A, Ryzhik L

SIAM J Appl Math

10 education, introduction,
health, analysis, problems,
matrix, method, methods,
control, programming

Flaherty J, Trefethen N,
Schnabel B, [None], Moon G,
Shor PW, Babuska IM, Sauter
SA, Van Dooren P, Adjei S

SIAM Rev

7. Conclusions and future work. We have developed an alternating Poisson
regression fitting algorithm, CP-APR, for PTF for sparse count data. When such data
is generated via a Poisson process, we show that methods based on KL divergence
such as CP-APR recover the true CP model more reliably than methods based on LS.
Indeed, in classical statistics, it is well-known that the randomness observed in sparse
count data is better explained and analyzed by the Poisson model (KL divergence)
than a Gaussian one (LS error).

Our algorithm can be considered an extension of the Lee–Seung method for KL
divergence with multiple inner iterations (similar to [19] for LS). Allowing for multiple
inner iterations has the benefit of accelerating convergence. Moreover, being very
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similar to an existing method, CP-APR is simple to implement with the exception of
some details of the sparse implementation as described in section 5.4. To the best of
our knowledge, ours is the first implementation of any KL-divergence-based method
for large-scale sparse tensors.

In section 3.3, we provide a general-purpose convergence proof for the alternat-
ing Gauss–Seidel approach. The regularity conditions imposed in our proofs make
rigorous and concrete our intuition that in the context of sparse count data, CP-
APR will converge provided that the data tensor meets a minimal density and that
nonzeros are sufficiently spread throughout the data tensor with respect to the size of
the factor matrices being fit. Any subproblem solver can be substituted for the MM
method without changing the theory. A benefit of the MM subproblem solver is that
its multiplier matrix can be used to explicitly track convergence based on the KKT
conditions. Moreover, we observe that we can use the KKT information to identify
and correct inadmissible zeros using a scooch. Lin [34] had a similar observation in the
LS case but came up with a different correction technique. We analyze convergence
of the MM subproblem with the scooch in order to show that it will always converge.
Our results are stronger than past results because they allow iterates with some zero
entries. Even though zero entries are possible to avoid in exact arithmetic, they often
occur in numerical computations and so are important to consider.

There remains much room for future work. Foremost among practical considera-
tions is speed of convergence. Although multiplicative updates are relatively simple
to compute, CP-APR can require many iterates. One approach to accelerating con-
vergence would be to replace the MM algorithm subproblem solver. For example,
Kim, Sra, and Dhillon [24] present fast quasi-Newton methods for minimizing box-
constrained convex functions that can be used to solve a nonnegative LS or minimum
KL-divergence subproblem in a nonlinear Gauss–Seidel solver. A second approach is
to focus on the sequence of outer iterates. Zhou, Alexander, and Lange [55] provide a
general quasi-Newton acceleration scheme for iterative methods based on a quadratic
approximation of the iteration map instead of the loss.

There has also been significant work in finding sparse factors via 	1-penalization
for matrices [37] and tensors [41, 51, 17, 36]. Sparse factors often provide more easily
interpreted models, and penalization may also accelerate the convergence. While the
factor matrices generated by CP-APR may be naturally sparse without imposing an
	1-penalty, the degree of sparsity is not currently tunable. One may also consider
extensions of this work in the context of missing data [22, 7, 50, 1] and for alternative
tensor factorizations such as Tucker [17].

Perhaps most challenging, however, are open questions related to rank and in-
ference. Questions about how to choose rank are not new, but given the context of
sparse count data, might that structure be exploited to derive a sensible heuristic or
even rigorous criterion for choosing the rank? We already see that Assumption 3.2
imposes an upper bound on the rank to ensure algorithmic convergence. Regard-
ing inference, our focus in this work was in thoroughly developing the algorithmic
groundwork for fitting a PTF model for sparse count data. CP-APR can be used to
estimate latent structure. Once an estimate is in hand, however, it is natural to ask
how much uncertainty there is in that estimate. For example, is it possible to put
a confidence interval around the entries in the fitted factor matrices, especially zero
or near-zero entries? Given that inference for the related but simpler case of Poisson
regression has been worked out, we suspect that a sensible solution is waiting to be
found. The benefits of answering these questions warrant further investigation. We
highlight them as important topics for future research.
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Appendix A. Notation details.
Outer product. The outer product of N vectors is an N -way tensor. For example,

(a ◦ b ◦ c)ijk = aibjck.
Elementwise multiplication and division. Let A and B be two same-size tensors

(or matrices). Then C = A ∗B yields a tensor that is the same size as A (and B)
such that ci = aibi for all i. Likewise, C = A�B yields a tensor that is the same size
as A (and B) such that ci = ai/bi for all i.

Khatri–Rao product. Give two matrices A and B of sizes I1×R and I2×R; then
C = A�B is a matrix of size I1I2 ×R such that

C =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aR ⊗ bR

]
,

where the Kronecker product of two vectors of size I1 and I2 is a vector of length I1I2
given by

a⊗ b =

⎡
⎢⎢⎢⎣
a1b
a2b
...

aI1b

⎤
⎥⎥⎥⎦ .

Matricization of a tensor. The mode-n matricization or unfolding of a tensor X
is denoted by X(n) and is of size In × Jn, where Jn ≡

∏
m �=n In. In this case, tensor

element i maps to matrix element (i, j), where

i = in and j = 1 +

N∑
k=1
k �=n

(ik − 1)

⎛
⎜⎝ k−1∏

m=1
m �=n

Im

⎞
⎟⎠ .

Appendix B. Proof of Lemma 3.1. In this section, we provide a proof for
Lemma 3.1. We first establish two useful lemmas.

Lemma B.1. Let X be fixed, let M = �λ;A(1), . . . ,A(N)�, and let f(M) be the
objective function as in (3.1). If f(M) ≤ ζ for some constant ζ > 0, then there exists
constants ξ′, ξ > 0 (depending on X and ζ) such that eTλ ∈ [ξ′, ξ].

Proof. Because the factor matrices are column stochastic, we can observe that

(B.1)

f(M) = eTλ−
∑
i

xi log

(∑
r

λr a
(n)
i1r
· · · a(n)iNr

)

≥ eTλ− ϑ log (eTλ) , where ϑ =

(
N∏

n=1

In

)
max

i
xi.

We have ζ ≥ eTλ − ϑ log (eTλ). Let g(α) = α − ϑ log(α), where α > 0. We show
that g(α) ≤ ζ implies there exists ξ′, ξ > 0 such that α ∈ [ξ′, ξ]. First assume there
is no such lower bound ξ′. Then there is a sequence αn tending to zero such that
g(αn) ≤ ζ. But for sufficiently large n, we have that −ϑ log(αn) > ζ. Since αn > 0
for all n, we have that for sufficiently large n the function g(αn) > ζ. Therefore, there
is such a lower bound ξ′.
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Now suppose there is no such upper bound ξ, and therefore there is an unbounded
and increasing sequence αn tending to infinity such that g(αn) ≤ ζ for all n. Note
that g′(α) = 1− ϑ/α. Since g(α) is convex, we have that

g(α) ≥ g(2ϑ) + g′(2ϑ)(α− 2ϑ) = g(2ϑ) +
1

2
α− ϑ.

This inequality, however, indicates that for sufficiently large n, the right-hand side is
greater than ζ. Therefore, there must be an upper bound ξ. Substituting α = eTλ
completes the proof.

Lemma B.2. Let X be fixed, and let f(M) be the objective function as in (3.1).
Let Ω(ζ) be the convex hull of the level set of f as defined in (3.3). The function f(M)
is bounded for all M ∈ Ω(ζ).

Proof. Let M̄, M̂ ∈ {M | f(M) ≤ ζ }. Define M̃ to be the convex combination

M̃ = αM̄+ (1− α)M̂, where α ∈ [0.5, 1).

Note that the restriction on α is arbitrary but makes the proof simpler later on.
Observe that

m̃i =
∑
r

{(
αλ̄r + (1− α)λ̂r

)∏
n

(
αā

(n)
inr + (1− α)â(n)inr

)}
.

On the one hand, by Lemma B.1, there exists ξ > 0 such that

m̃i ≤
∑
r

(
αλ̄r + (1 − α)λ̂r

)
= α
∑
r

λ̄r + (1 − α)
∑
r

λ̂r ≤ αξ + (1− α)ξ = ξ.

On the other hand,

m̃i ≥
∑
r

{
αλ̄r
∏
n

αā
(n)
inr

}
= αN+1m̄i.

Thus,

αN+1m̄i ≤ m̃i ≤ m̄i + ξ.

Now consider

m̃i − xi log m̃i ≤ m̄i + ξ − xi logαN+1m̄i

= (m̄i − xi log m̄i) + ξ − (N + 1)xi logα

≤ (m̄i − xi log m̄i) + ξ + (N + 1)xi log 2.

Thus,

f(M̃) ≤ f(M̄)+ξ
∏
n

In+(N+1) log 2
∑
i

xi ≤ ξ
(
1 +
∏
n

In

)
+(N+1) log 2

∑
i

xi.

Given these two lemmas, we are finally ready to provide the proof of Lemma 3.1.
Proof of Lemma 3.1. Fix ζ. If {M ∈ Ω | f(M) ≤ ζ } is empty, then Ω(ζ) is empty

and there is nothing left to do. Thus, assume {M ∈ Ω | f(M) ≤ ζ } is nonempty.
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Since f is continuous at all M ∈ Ω for which f(M) is finite, f is obviously continuous
on Ω(ζ) by Lemma B.2. Since f is continuous, {M ∈ Ω | f(M) ≤ ζ } is closed because
it is the preimage of the closed set (−∞, ζ] under f ; thus, Ω(ζ) is closed because it
is a convex combination of closed sets. Consequently, we only need to show that
Ω(ζ) is bounded. Assume the contrary. Then there exists a sequence of models

Mk = �λk;A
(1)
k , . . . ,A

(N)
k � ∈ Ω(ζ) such that eTλk → ∞. By Lemma B.2, f(M) is

finite on Ω(ζ), but this contradicts Lemma B.1. Hence, the claim.

Appendix C. Deriving the MM updates. In this section we derive the MM
update rules used to solve the subproblem. We first verify that (4.2) majorizes (4.1).
For convenience let C = BT so that (4.1) reduces to

(C.1) min
C≥0

f(CT) =
∑
ij

cTi πj − xij log
(
cTi πj

)
.

Proofs of the next two lemmas are given by Lee and Seung in [32], but their
arguments do not carefully handle boundary points. The following two lemmas and
their proofs treat with more rigor the existence and value of updates when anchor
points lie on admissible regions of the boundary.

Lemma C.1. Let x ≥ 0 be a scalar and π ≥ 0, π 
= 0, be a vector of length R.
For a vector c ≥ 0, c 
= 0, of length R, let the function f be defined by

f(c) = cTπ − x log (cTπ) .
Then f is majorized at c̄ ≥ 0 by

g(c, c̄) = cTπ − x
R∑

r=1

αr log

(
crπr
αr

)
, where αr =

c̄rπr

c̄Tπ
.

Proof. If x = 0, then g(c, c̄) = f(c) for all c, and g trivially majorizes f at c̄.
Consider the case when x > 0. It is immediate that g(c̄, c̄) = f(c̄). The majorization
follows from the fact that log is strictly concave and that we can write cTπ as a convex
combination of the elements crπr/αr. Note that if any elements c̄rπr are zero, they
do not contribute to the sum since we assume 0 · log(μ) = 0 for all μ ≥ 0 and αr

= 0.
We now derive an expression for the unique global minimizer of majorization.

The majorization defined in (4.2) can be expressed in terms of C as

(C.2) g(C, C̄) =
∑
rij

[
criπrj − αrijxij log

(
criπrj
αrij

)]
, where αrij =

c̄riπrj∑
r c̄riπrj

.

Lemma C.2. Let f and g be as defined in (C.1) and (4.2), respectively. Then

for all C̄ ≥ 0 such that f(C̄
T
) is finite, the function g(·, C̄) has a unique global

minimum C∗ which is given by (C∗)ri =
∑

j αrijxij , where αrij = c̄riπrj/c̄
T
i πj for

all r = 1, . . . , R, i = 1, . . . , I.
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Proof. Because g(C, C̄) separates in the elements of C we focus on solving each
elementwise minimization problem. Dropping subscripts, the minimization problem
with respect to cri can be rewritten as

(C.3) min
c≥0

c−
∑
j

αjxj log

(
cπj
αj

)
,

where we have used the fact that
∑

j πj = 1. It is sufficient to prove that this
univariate problem has a unique global minimizer, c∗ =

∑
j αjxj . First, consider the

case where the second term is nonzero. Inspecting the stationarity condition reveals
the solution. Moreover, the function is strictly convex and so has a unique global
minimum. Second, consider the case where the second term is zero. Then, it is
immediate that the unique global minimum is c∗ = 0. Moreover, the second term can
vanish only when

∑
j αjxj = 0, and so the formula applies.

Appendix D. Proof of Theorem 4.3. In this section, we prove that the MM
algorithm in Algorithm 2 solves (4.1). We first establish the following general result
for algorithm maps. Part (a) is a simple version of Zangwill’s convergence theorem
[54, p. 91] in the case where the objective function and the algorithm map are both
continuous. The proof of part (b) follows arguments of part of a proof for a different
but related property on MM iterates in [29, p. 198].

Theorem D.1. Let f be a continuous function on a domain D, and let ψ be a
continuous iterative map from D into D such that f(ψ(x)) < f(x) for all x ∈ D with
ψ(x) 
= x. Suppose there is an x0 such that the set Lf (x0) ≡ { x ∈ D | f(x) ≤ f(x0) }
is compact. Define xk+1 = ψ(xk) for k = 0, 1, . . .. Then (a) the sequence of iterates
{xk} has at least one limit point and all its limit points are fixed points of ψ, and
(b) the distance between successive iterates converges to 0, i.e., ‖xk+1 − xk‖ → 0.

Proof. The proof of (a) follows that of Proposition 10.3.2 of [29]. First note that
the sequence of iterates must be in Lf (x0) because f(xk) ≤ f(x0) for all k. Since
Lf (x0) is compact, {xk} has a convergent subsequence whose limit is in Lf (x0); denote
this as xk�

→ x∗ as 	→∞. Since f is assumed to be continuous, lim f(xk�
) = f(x∗).

Moreover, clearly f(x∗) ≤ f(xk�
) for all k�.

Note that f(ψ(xk�
)) ≤ f(xk�

). Taking the limit of both sides and applying the
continuity of ψ and f , we must have that f(ψ(x∗)) ≤ f(x∗). But we also have that

f(x∗) ≤ f(xk�+1
) ≤ f(xk�+1) = f(ψ(xk�

)).

Again taking limits we obtain f(x∗) ≤ f(ψ(x∗)). Therefore f(x∗) = f(ψ(x∗)). But
by assumption, this equality implies that x∗ is a fixed point of ψ, and thus (a) is
proved.

We now turn to the proof of (b), which follows the proof of Proposition 10.3.3
in [29]. Recall {xk} denotes the iterate sequence. Since f(xk) is decreasing and f is
bounded below on Lf (x0), we can assert that f(xk) is a convergent sequence with a
limit f∗. Assume the contrary of (b), i.e., that there exists an ε > 0 and a subsequence
{k�} of the indices such that

(D.1) ‖xk�+1 − xk�
‖ > ε for all k�.

Note that this subsequence is different from the one discussed in proving part (a).
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Since xk�
∈ Lf (x0), by possibly restricting {k�} to a further subsequence, we may

assume that xk�
converges to a limit u. By possibly restricting {k�} to yet a further

subsequence, we may additionally assume that xk�+1 converges to a limit v. By (D.1),
we can conclude ‖v − u‖ ≥ ε. Note that xk�+1 = ψ(xk�

). Taking the limit of both
sides and using the continuity of ψ we obtain ψ(u) = v. Additionally, using the
continuity of f ,

f(u) = lim
�→∞

f(xk�
) = f∗ = lim

�→∞
f(xk�+1) = f(v).

Since v = ψ(u), we have that f(u) = f(ψ(u)), which by assumption occurs if and
only if u = ψ(u). This implies that u = v, and we have arrived at a contradic-
tion.

We now prove a series of lemmas leading up to a proof of the desired convergence
result.

Lemma D.2. Let B ≥ 0 such that f(B) is finite and suppose B 
= B ∗Φ. Then
f(B) > f(B ∗Φ).

Proof. By Lemma C.2 (B ∗Φ)T is the unique global minimizer of g(·,BT) which
majorizes f at BT. Therefore, if B 
= B ∗ Φ, we must have f(B) = g(BT,BT) >
g((B ∗Φ)T,BT) ≥ f(B ∗Φ).

Lemma D.3. Let f be as defined in (4.1). For any nonnegative matrix B0 such
that f(B0) is finite, the level set Lf (B0) = {B ≥ 0 | f(B) ≤ f(B0) } is compact.

Proof. The proof follows the same logic as the proof for Lemma B.1.
Lemma D.4. Let f be as defined in (4.1) and ψ be as defined in (4.3), and suppose

Assumption 4.2 is satisfied. For any nonnegative matrix Bk such that f(B0) is finite,
the sequence Bk+1 = ψ(Bk) converges.

Proof. Note that all limit points of ψ are fixed points of f by Theorem D.1.
First, we show that the set of fixed point is finite. Suppose that B is a fixed point

of ψ. Then we must have B ∗ (E−Φ(B)) = 0. By Lemma 3.4, it can be verified that
B is the unique global minimizer of

min f(U) s.t. U ∈ {U ≥ 0 | uir = 0 if bir = 0 } ,

where f is as defined in (4.1). Therefore, any fixed point that has the same zero
pattern of B must be equal to B. Since there are only a finite number of possible zero
patterns, the number of fixed points is finite.

Since every limit point is a fixed point by Theorem D.1(a), there are only finitely
many limit points. Let {Np} denote a collection of arbitrarily small neighborhoods
around each fixed point indexed by p. Only finitely many iterates Bk are in Lf (B0)−
∪pNp. So, all but finitely many iterates Bk will be in ∪pNp. But ‖Bk+1 − Bk‖
eventually becomes smaller than smallest distance between any two neighborhoods by
Theorem D.1(b). Therefore the sequence Bk must belong to one of the neighborhoods
for all but finitely many k. So, any sequence of iterates must eventually converge to
exactly one of the fixed points of ψ.

We now argue that it is impossible for the MM iterate sequence to converge to a
non-KKT point if it has been appropriately initialized.

Lemma D.5. Let f be as defined in (4.1) and suppose Assumption 4.2 is satisfied.
Suppose Bk → B∗ is a convergent sequence of iterates defined by (4.3) with B0 ≥ 0 and
f(B0) finite. If (B0)ir > 0 for all (i, r) such that (Φ(B∗))ir > 1, then ∇f(B∗) ≥ 0.
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Proof. We give a proof by contradiction. Suppose there exists (i, r) such that
(B0)ir > 0 but (∇f(B∗))ir < 0. Since B∗ is a fixed point of ψ, we must have [1 −
(Φ(B∗))ir](B∗)ir = 0. By our assumption, however, (∇f(B∗))ir = [1− (Φ(B∗))ir ] <
0. Thus, we must have (B∗)ir = 0. On the other hand, (Bk)ir > 0 for all k
(proof left to reader). Since Φ(·) is a continuous function of B on Lf (B0), we
know that there exists some K such that k > K implies Bk is close enough to
B∗ such that (∇f(Bk))ir = [1 − (Φ(Bk))ir ] < 0. Since (Bk)ir > 0, we have
[1 − (Φ(Bk))ir ](Bk)ir < 0, which implies (Bk)ir < (Bk+1)ir for all k > K. But
this contradicts limk→∞(Bk)ir = (B∗)ir = 0. Hence, the claim.

We now prove Theorem 4.3.
Proof of Theorem 4.3. By Lemma D.4, the sequence {Bk} converges; we call

the limit point B∗. At this limit point, we have (a) B∗ ≥ 0, (b) ∇f(B∗) ≥ 0 by
Lemma D.5, and (c) B∗ ∗∇f(B∗) = 0 by virtue of B∗ being a fixed point of ψ. Thus,
the point B∗ satisfies the KKT conditions with respect to (4.1). Furthermore, since
f is strictly convex by Lemma 3.4, we can conclude that B∗ is the global minimum
of f .

Appendix E. Numerical experiment details for section 6.1. All imple-
mentations are from version 2.5 of Tensor Toolbox for MATLAB [4]. All methods use
a common initial guess for the solution.

• Lee–Seung LS: Implemented in cp nmu as descibed in [3]. We use the default
parameters except that the maximum number of iterations (maxiters) is set
to 200 and the tolerance on the change in the fit (tol) is set to 10−8.
• CP-ALS: Implemented in cp als as described in [3]. We use the default
parameter settings except that the maximum number iterations (maxiters)
is 200 and the tolerance on the changes in fit (tol) is 10−8.
• Lee–Seung KL: Implemented in cp apr as described in this paper. The pa-
rameters are set as follows: kmax = 200 (maxiters), τ = 10−8 (tol), κ = 0
(kappa), 	max = 1 (maxinneriters), ε = 0 (epsilon).
• CP-APR: Implemented in cp apr as described in this paper. The parameters
are set as follows: kmax = 200 (maxiters), τ = 10−4 (tol), κ = 10−2 (kappa),
κtol = 10−10 (kappatol), 	max = 10 (maxinneriters), ε = 0 (epsilon).

We compare the methods in terms of their FMS, defined as follows. Let M =

�λ;A(1), . . . ,A(N)� be the true model and let M̄ = �λ̄; Ā(1)
, . . . Ā

(N)� be the com-
puted solution. The score of M̄ is computed as

score(M̄) =
1

R

∑
r

(
1− |ξr − ξ̄r|

max{ξr, ξ̄r}
)∏

n

a
(n)T
r ā

(n)
r

‖a(n)r ‖‖ā(n)r ‖
,

where ξr = λr
∏
n

‖a(n)r ‖ and ξ̄r = λ̄r
∏
n

‖ā(n)r ‖.

The FMS is a rather abstract measure, so we also give results for the number of
columns in A(1) that are correctly identified. In other words, we count the number
of times that the cosine of the angle between the true solution and the computed

solution is greater than 0.95, mathematically, a
(1)T
r ā

(1)
r /‖a(1)r ‖‖ā(1)r ‖ ≥ 0.95. We use

the first mode, but the results are representative of the other modes.

Appendix F. Additional Enron results. Figure F.1 illustrates the four com-
ponents omitted in Figure 6.2.
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Fig. F.1. Remaining components from factorizing the Enron data.
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