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1. Introduction

Tensor decompositions (e.g., higher-order analogues of matrix decompositions)
are powerful tools for data analysis. In particular, the CANDECOMP/PARAFAC
(CP) model [1, 2] has proved useful in many applications such chemometrics, signal
processing, and web analysis; see [3] for details. The problem of computing the CP
decomposition is typically solved using an alternating least squares (ALS) approach.
We discuss the use of optimization-based algorithms for CP, including how to effi-
ciently compute the derivatives necessary for the optimization methods. Numerical
studies highlight the positive features of our CPOPT algorithms, as compared with
ALS and Gauss-Newton approaches.

2. CANDECOMP/PARAFAC Background

Let Z be an N -way tensor of size I1 × I2 × · · · × IN . A rank-R CP model [1, 2]
is Z ≈ JA(1), . . . ,A(N)K =

∑R
r=1 a(1)

r ◦ · · · ◦ a(N)
r . Here the ◦ notation indicates the

vector outer product. Each factor matrix A(n) is of size In × R, and a(n)
r denotes

the rth column of A(n). The corresponding least squares optimization problem is

(1) min
A(1),...,A(N)

f(A(1), . . . ,A(N)) ≡ 1
2

∥∥∥Z− JA(1), . . . ,A(N)K
∥∥∥2

.

The standard approach for fitting CP models is an alternating least squares
(ALS) method which solves for one factor matrix at a time while holding the others
constant; that is, the method loops through n = 1, . . . , N and solves

(2) min
A(n)

f(A(1), . . . ,A(N)).

The loops continue until there is no further improvement in the objective function.
Equation (2) reduces to a linear least squares problem of special form and can be
solved efficiently. See [5, 3] for further details.

3. CP via Optimization

We propose to solve (1) using an optimization approach. In this case, f is
a mapping from the cross-product of N two-dimensional vectors spaces so that
f : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ R. In other words, we have a function of
P = R

∑N
n=1 In variables. It is possible to calculate the gradient, i.e., the partial

derivative of f with respect to each column of A(n), as follows

∂f

∂a(n)
r

= −

(
Z

N

X
m=1
m6=n

a(m)
r

)
+

R∑
`=1

 N∏
m=1
m6=n

a(m)T
r a(m)

` .

a(n)
` .

Here X denotes tensor-times-vector multiplication in the specified modes. Note
that this is the same as the result in [4], where it was used as the basis for a
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multiplicative update rule. We can use the gradient to solve (1) via a standard
optimization method such as the nonlinear conjugate gradient method.

4. Experiments

We compare our optimization approach for solving (1), which we call CPOPT,
with ALS and a Gauss-Newton approach called INDAFAC [6]. We ran a series
of 600 experiments on simulated datasets of rank three, using the experimental
procedures outlined in [7]. The datasets had different levels of both homoscedastic
and heteroscedastic noise and we fit a CP model using both three (exact) and
four (overfactoring) components. The average performance of each algorithm is
presented in Table 1. Because CPOPT does not need to solve the Gauss-Newton
equation, it scales better to larger problems and is faster than INDAFAC at the
larger sizes without sacrificing its ability to recover the underlying factors (i.e., its
accuracy).

Time (sec) Accuracy (%)
Size ALS INDAFAC CPOPT ALS INDAFAC CPOPT

20× 20× 20 1.1 1.6 3.4 86.0 100.0 100.0
50× 50× 50 0.8 28.1 8.5 66.8 99.8 100.0

100× 100× 100 2.7 257.1 40.6 57.2 100.0 100.0
Table 1. Comparison of different methods for computing the CP decomposition.
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